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Abstract

Our aim in this paper is to show the vanishing exponential integrability
for Riesz potentials of functions in Orlicz classes, as an improvement of
continuity results of Sobolev functions. We also show the vanishing double
exponential integrability.

1 Introduction

For 0 < o < n, we define the Riesz potential of order « for a nonnegative measur-
able function f on R" by

&Juwa/M—yW“ﬂwdy

Here we assume that R, f # oo, or equivalently,

/ (14 1™ " f () dy < oo (1.1)

for this fact, see [11, Theorem 1.1, Chapter 2]. In the present paper, we deal with
functions f satisfying the Orlicz condition of the form :

[ etsw) dy < . (1.2)

where ®,(r) is of the form rP¢(r) with 1 < p < co. Exact condition on ¢ will be
given in the next section (see (2.2) below). For a set £ C R™ and an open set
G C R", we define
Coy (E5G) =it [ 0, (g(0) d
a

g
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where the infimum is taken over all nonnegative measurable functions g on R" such
that ¢ vanishes outside G' and R,g(z) > 1 for every z € E (cf. Meyers [8] and the
first author [11]). We say that £ is of Cy ,-capacity zero if Co0,(ENG;G) =0
for every bounded open set GG. A property is said to hold C, ¢,-quasi everywhere
in G if it holds on G except for a set of C, ¢,-capacity zero.

For a measurable function v on R"™, we define the integral mean over a mea-
surable set £ C R" of positive measure by

]i u() de = |1§| /E w() dz.

A famous Trudinger inequality ([16]) insists that Sobolev functions in W'"
satisfy finite exponential integrability (see also [1], [3], [13], [17]). Recently great
progress has been made for Riesz potentials in the limiting case ap = n (see e.g.
[4], [5], [6], [12], [14]). In this paper, we are concerned with continuity (or differ-
entiability) property for Riesz potentials and aim to show vanishing exponential
integrabilities, as an improvement of the result by Adams and Hurri-Syrjénen [2,
Theorem 1.6]. In fact we give the following two results as corollaries of more gen-
eral theorems on Riesz potentials of Orlicz functions (see Theorems 3.2, 4.5 and
5.2 below).

THEOREM A. Let f be a nonnegative measurable function on R" satisfying
(1.1) and the Orlicz condition

. f(y)Plog(e + f(y)))*[log(e + log(e + f(y)))]* dy < oo (1.3)

for some numbers p, a and b. If ap = n, a < p—1, f = p/(p —1— a) and
v=0b/(p—1—a), then

71“11% - {exp(A|Raf(.r) - Raf(x0)|ﬁ(1og(e + [Rof(r) = Raf(20)])") — 1} dx =0
’ (1.4)

holds for Cy, ¢,-quasi every xo € R" and all A > 0.

We see that (1.4) is true for every f > 0 (and 7 > 0) when a = p — 1. In case
a > p— 1, we know that R, f is continuous on R" (see [9] and [15]).

In case a = p — 1, we are also concerned with vanishing double exponential
integrability.

THEOREM B. Let f be a nonnegative measurable function on R" satisfying
(1.1) and the Orlicz condition

Fy)Pllog(e + f(y)]P~"log(e + log(e + f(y)))]" dy < oo
R’Vl
for some numbers p and b. If ap=n,b<p—1and f=p/(p—1—0b), then

lim {exp(Aexp(B|Raf(x) — Rof(x0)|7)) — e} dz =0 (1.5)

r—0 B(zo,r)



holds for Cy, ¢,-quasi every xo € R" and all A, B > 0.

In case b > p — 1, R, f is continuous on R" (see [9] and [15]), so that (5.11)
holds for every xg € R™ and (3 > 0.

2 Orlicz functions

We deal with functions f satisfying the Orlicz condition :

/%(f(y)) dy < oo. (2.1)

Here ®,(r) is of the form rP¢(r), where 1 < p < oo and ¢ is a positive monotone
function on the interval [0, c0) of log-type; that is, there exists a positive constant
M such that

M o(r) < p(r?) < Mo(r) for r > 0. (2.2)

It follows from condition (2.2) that ¢ satisfies the doubling condition, that is,
Cro(r) < ¢(2r) < Cp(r) for r > 0, (2.3)

where C'is a positive constant. If 6 > 0, then, in view of [11], we can find a positive
constant C' = C'(9) for which

s2p(s) < Ctop(t) whenever t > s > 0. (2.4)

This implies that
lim ®,(r) =0 (= 0,(0)).

r—0

If ¢ is nondecreasing, then we have for n > 1,

n 1/p'
(J etreertar) 2 ot o, (25)
1

where p’ denotes the Holder conjugate, that is, 1/p+ 1/p' = 1.

For a measurable set £ C R", denote by |F| the Lebesgue measure of E, and
by B(z,r) the open ball centered at x with radius r. Further we use the symbol
C to denote a positive constant whose value may change line to line.

Let us give two fundamental facts:

LEMMA 2.1 (cf. [11, Remark 1.2, p.60]). There exists C' > 0 such that

/ |z —y|* ™ dy < C|E|*/" for every measurable set E C R".
E



LEMMA 2.2 (cf. [9], [14]). Let ap = n. If f is a nonnegative measurable
function on an open set G and 1 > 2, then

/ 5 — 91" f(y) dy
{yeG:1<f(y)<n}

< o[ erran) " ([ muw )

where C' is a positive constant independent of f, n and G.

We prepare some lemmas which are used to establish vanishing exponential
integrabilities for Riesz potentials.

LEMMA 2.3 (cf. [6], [7], [14]). Let G be a bounded open set in R". For zy € G
and a nonnegative measurable function u on GG, the following are equivalent:

(i) lim {exp(Au(z)) — 1} dz =0 for every A > 0;

r—0 B(zo,r)

1 1/q
(ii) llr%sup (][ u(z)? dx) = 0.
r=0g>1 4 B(zo,r)

PRroOF. First suppose (i) holds. By the power series expansion of e”, we have
][ {exp(Au(x)) — 1} dx = Z 7[ {Au(z)}9 dx.
B(zo,r) (zo,r)
Set
e1(r) :][ {exp(Au(z)) — 1} dz.
B(zo,r)
Then note that lim, .o &;(r) = 0 by our assumption. By Stirling’s formula, we have

1

i 7[( )u(:v)q dr < Cey(r)/qe” "A™1
B(xo,r

1 1/q
sup — (][ u(z)? dx) <CcA™?
¢>1 4 B(zo,r)

for small > 0. Since A is arbitrary, we see that

1 1/‘1
lim sup — (][ u(z)? da:) =0,
=0 ¢>1 ¢ \JB(zo,r)

for ¢ > 1, so that

as required.



Conversely, suppose (ii) holds. Set

1 1/q
gq9(r) = sup — (][ u(z)? dx) :
19 B(zo,r)

Then note that lim,_e2(r) = 0 by (ii). By Stirling’s formula again, we have

]{S(xo,r){exp(Au(x)) —1}dx = Z o ]{3(330 , {Au(z)}? dx

< CZ{@A@(T)}Q
qg=1
We insist that the last series converges when eAegy(r) < 1 and it tends to zero with
7, since lim,_e9(r) = 0. O

COROLLARY 2.4. Let GG be a bounded open set in R". For § > 0, xo € G and
a nonnegative measurable function u on G, the following are equivalent:

(i) lim {exp(Au(z)’) — 1} dx = 0 for every A > 0;

r—0 B(zo,r)

1 1/q
(ii) hm sup ——= (][ u(z)? dx) = 0.
0g>14 1/6 B(zo,r)

LEMMA 2.5 (cf. eg. [17, p.89]). Let G be a bounded open set in R™ and
0 <6 < 1. Then

l/G{Raf(x)}q2 dx] Ve < Ogyt~Va {/Gf(y)ql dy}l/ql

whenever 1 < ¢ < ¢ < 00, 1/q1 — a/n < (1 —0)/q and f is a nonnegative

measurable function on G, where C' is a positive constant independent of qi, o
and f.

By change of variables, we can prove the following result.

COROLLARY 2.6. If ap = n, then

1/q ) 1/p
o twasayad Cseor { [ e an
B(zo,r) B(zo,r)

whenever ¢ > 1 and f is a nonnegative measurable function on B(xy,r) with
0<r<l

Consider the set
Ep={reR": /Ix —y|* " f(y) dy = oo}.

5



The following can be obtained readily from the definition of Cy,; see [11,
Theorem 1.1, Chapter 2].

LEMMA 2.7. If f is a nonnegative measurable function on R" satisfying (1.1)

and (2.1), then
Coo,(Ef) =0.

As in the proof of Lemma 7.3 and Corollary 7.2 in [10], we can prove the
following result.

LEMMA 2.8. (i) For 0 <r <1/2, Co,(B(0,7); B(0,1)) < C¢*(r)' ", where

1
P (r) =/ (™)~ at.
(ii) For a nonnegative measurable function f on R™ satisfying (2.1), set

Fy={z € R" : limsup @*(r)pl/ Q,(f(y)) dy > 0}.
B(z,r)

r—0

Then Oa’q;.p (Ff) =0.

3 Vanishing exponential integrability when ¢ is
nondecreasing

In this section we are concerned with the case when ¢ is nondecreasing.
In view of Lemmas 2.1, 2.2 and Corollary 2.6, we have the following result.

LEMMA 3.1. Suppose ap = n and ¢ is nondecreasing. If n, > n; > 1 and
1o > 2, then

1/q
Ry ] <o
B(zo,r)

72 , 1/p 1/p
; c{ [ e /ptldt} { / ) dy}
1 {yeB(zo,r):m<f(y)<n2}

+Oq " {p(no)} 7 {/{ ©p(f(y)) dy}l/p

yEB(zo,r):f(y)>n2}

for all ¢ > 1 and nonnegative measurable functions f on B(xzg,r) with 0 < r < 1.

Now we show vanishing exponential integrability when ¢ is nondecreasing.



THEOREM 3.2. Let ¢ be a positive nondecreasing function on [0, o) of log-type
such that

/1 ()PPt = oo, (3.1)

Let 3 > 0 and 1 be a positive monotone function on [0,00) of log-type which
satisfies one of the following conditions:

(i) v is nondecreasing and
ed /v
lim sup ¢~ /#¥((log q)™1) (/ o(t)? /ptldt) < 00, (3.2)
q—00 1
where
U(5) =sup tU(t) < oo for 6 > 0. (3.3)
t>1

(i) ¢ is nonincreasing, tlim Y(t) =0 and

ed 1/p
limsup ¢~ P1(q) (/ @(t)pl/ptldt) < 0. (3.4)
1

q—00

If ap = n and f is a nonnegative measurable function on R™ satisfying (1.1) and
(2.1), then

lim {exp(A(|Raf(2) = Raf (x0)[¥(|Raf () = Raf(20)]))?) — 1} dz =0

=0/ B(x0,r)

holds for Cy, ¢,-quasi every xo € R" and all A > 0.

PROOF. For a nonnegative measurable function f on R" satisfying (1.1) and
(2.1), consider the set Ey. By Lemma 2.7, Cy0,(Ef) = 0. For zp € R" — Ey, we
write

Raf@) = Roftz) = [ eyl ) dy

+ [ o~ 91" w) dy — Raf (20)
R"™"—B(z0,2|z—z0|)

If y € R"— B(xq, 2|z —1x0|), then |zo—y| < 2|x—y|, so that we can apply Lebesgue’s
dominated convergence theorem to obtain

lim Us(z) = 0.
T—T0
This implies that
] 1 1/q
hr% sup —— {][ {|Ua(2) | (|Us(2)|) }* dx = 0. (3.5)
=V g¢>1 ¢ B(zo,r)

7



Note here that
Ui < [ ey ) dy = R
B(zo,2r)

for z € B(zg, 7). Hence, in view of Lemma 2.3, it suffices to show that

1/q

= 0. (3.6)

. 1 q
lim sup — b{B(mo,r) {Rofr(@)(Rofr(7))}! dx

r—0 qu ql/ﬁ

First we consider the case when 1 is nondecreasing. If p < ¢ < coand 0 < <
1, then we have by (3.3)

f. RS @) i )

1/q
< v |f (Raf (@) ]
{z€B(zo,r):Ra fr(z)<1}
1/q
+10) | R @)™ | L m)
{z€B(zo,r):Ra fr(z)>1}

It follows from Corollary 2.6 that

1/q
lim {]i(xo,r){Rafr(I)}q dx} =0,

r—0

which implies that

lim —— []i AR LR ) dx] Ty (3.8)

r—0 ql/ﬁ

for each fixed ¢ > 1.
Forn>2 0<d<1land0<r <1, weseefrom (3.7) and Lemma 3.1 that

Hg(m) {Rofr ()0 (Rafo(2))} da:] 1/q

IA

o(1)+¥0) | U@M@P“@MTM

(330 7r)

n ) 1/p
< C+CY(0) lr“ + {/ o(t)™P /ptldt}
1

1/p
A (7)) d |
{yeB(wo,27r):1<f(y)<n}

+ P ()} {/{ ©p(f(y)) dy}l/p]

yEB(z0,2r):f(y)>n}

144

8



If we take n = €4 and 6 = (logq)~" < 1, then we have by (2.5) and (3.2)

1/q
" M;( B @RS ) dx] < OV + Crow((logq) )

1/p 1+(logq) !

+ |witosa) e { | i oty

(1+(logq)~")/p
x { [ 0w dy}
B(zo,2r)

< Cq¢ P+ 0rw((logg) g +C {/B D, (f(y)) dy

(z0,21)

}(H(logq)l)/p

For ¢ > 0, take ¢o > e such that ¥((logq)~')g~'/? < & whenever ¢ > go. Then it
follows that

up [][ RSS! dx] "

q>4q0

< Ce(1+19) +c{ [ ) dy}l/p,

(z0,2r)

which together with (3.8) implies (3.6).
Next we consider the case when 1 is nonincreasing. In this case we see from
Corollary 2.6 that

1 1/q
lim [][ (R £ ()0 (R o (1))} dx] ~0 (3.9)
B(zo,r)
for each fixed ¢ > 1. We have by (2.4) with ¢ =1
1/q
/ ARSI )Y w] <t

o[ AR ta] "

forn > 1. If e2 > i > 1, then we have by Lemma 3.1 and (2.5)

1/q
sy ] <o
B(zo,r)

el 1/p 1/p
+0{ / so(t)ﬂ’/pt-ldt} { / 3,(f(y)) dy} |
1 {y€B(z0,27):f(y)>n}



so that

1/q
[][ AR RS ) dx] < Ol (1 + %)

+ Cy(n) {/1 w(t)"’//”t‘ldt}l/p/ {/B(mom ®,(f(y)) dy}l/p-

Now we take 7 = ¢'/# to obtain by (2.2) on 1 and (3.4)

1 1/q
Supl— {Rafr(x)¢(Rafr(x))}q dx

/6 B(zo,r)

< Cpld/) 1+ 1)+ C { / ) dy}l/p,

which together with (5.10) yields (3.6).
Now we obtain the required assertion from Lemma 2.3. 0

COROLLARY 3.3. Let f be a nonnegative measurable function on R" satisfying
(1.1) and (2.1) when 0 < a < p — 1 or when a =0 and b > 0. If ap = n, then

ll_r% B ){exp(A|Raf(x) - Raf(x0)|ﬁ(log(e+ |Rof(2) = Raf(20)]))") =1} dz =0

holds for Cy ¢,-quasi every xo € R™ and all A > 0, where 3 = p/(p —1 — a) and
v=0b/(p—1-a).

Corollary 3.3 follows from Theorem 3.2, as in the proof of Corollary 2 in [14].

In fact, let p(t) = (logt)?(loglogt)® when t >ty > e and ¢(t) = p(ty) when
t < ty. If ty is sufficiently large, then ¢ is nondecreasing. In this case, it suffices to
consider 1(t) = {log(e 4 t)}*/? and hence ¥(§) = 6~%? when b > 0.

REMARK 3.4. If ap = n and (3.1) does not hold, then it is known (cf. [9] and
[15]) that R, f is continuous on R", so that the conclusion of Theorem 3.2 remains
true.

4 Vanishing exponential integrability when ¢ is
nonincreasing

In this section let ¢ be a positive nonincreasing function on [0, co) satisfying (2.2).
In this case we need the following easy facts.

LEMMA 4.1 ([14, Lemma 5]). If ¢ > 0, then

t=Yp(e?) < Cop(t) whenever t > 1.

10



LEMMA 4.2 ([14, Lemma 6]). lim {p(e)}/9=1.
g—00

By Lemma 2.5 and change of variables, we have the next result.

LEMMA 4.3. Let 0 <0 < 1. If 0 < r < 1, then

/¢
| sy a] <orwn Ll e a)
B(xo,r) B(zo,T)

whenever 1 < ¢ < ¢ < 00, 1/q1 — a/n < (1 —0)/q2 and f is a nonnegative
measurable function on B(xg, ), where C' is a positive constant independent of ¢,
G2, r and f.

1/g2

Let f be a nonnegative measurable function on R™ satisfying (1.2), and let
p=n/a > 1. In view of Lemmas 2.1, 2.2 and 4.3, we have

1/q2
L%) (Rof.(2))® dm] < Cro
B(zo,r)

n ) 1/p 1/p
+c{/“wwﬁ@fWﬁ {/ @Aﬂw>@}
1 {y€B(z0,2r):1< f(y)<n}

1/41
+—CW“q§_”ql{][ f@DQ1dy} (4.1)
{ye€B(=0,27):f(y)>n}

for 0 <r <1andn>2, whenever 1 < ¢ < ¢ <ooand 1/¢; —a/n < (1—10)/q,
where f, = fXB(o,2r) With xg denoting the characteristic function of £. If we take
n = r~°0+9) with ¢ > 0, then

e(rf(y) < o(f(y)7 1)) < Co(f(y))  when f(y) > 7.

Let 1 < ¢ <p=nj/a, 1/qf =1/ — a/n > 0 and set gy = (1 — 0)g}. Then it
follows from (2.4) that

Taq1n/ Fly)® dy < C/ q)p(f(y)) dy,
{yeB(w0,2r):f(y)=n} B(x0,2r)

so that

1/q
{][ {Rofr(x)} dx] < Cr®
B(zo,r)

1 1/p 1/p
C 1ﬂ@1d} { ®, d}
" {K@@ )ity lé@ﬂ)(ﬂw>y
1/q1
+C£1m{/) ®Aﬂw)@}
B(zo,2r)

11



for all ¢ such that 1 < ¢ < qp.
Therefore we obtain the following result with the aid of Lemma 2.8.

LEMMA 4.4. Suppose ap = n. If f is a nonnegative measurable function on
R" satisfying (2.1), then

lim {Ruofr(z)}? dx =0
r—0 B(zo,r)
holds for xzy € R" \ Fy and 1 < ¢ < oo, where f. = fXB(o,2r)-

We are now ready to treat the case when ¢ is nonincreasing.

THEOREM 4.5. Let ¢ be a positive nonincreasing function on [0,00) of log-
type. Let 3 > 0 and 1 be a positive monotone function on [0, 00) of log-type which
satisfies one of the following conditions:

(i) v is nondecreasing and

limsup ¢~/ /7 ((log ¢) ) {p(e")} V7 < o0 (4.2)

g—00
with U given by (3.3);

(ii) v is nonincreasing, lim ¥ (r) = 0 and

7—00

lim sup ¢~ V57 () {p(e?) } VP < 0. (4.3)

q—00

If ap = n and [ is a nonnegative measurable function on R™ satisfying (1.1) and
(2.1), then

lim ( ){eXP(A(\Raf(ﬁﬁ) — Rof(20)[(|Raf(2) = Raf(20)]))”) — 1} dz =0
—=YJB To,T
holds for Cy ¢,-q.€. 9 € R" and all A > 0.
PROOF. For a nonnegative measurable function f on R™ satisfying (1.1) and

(2.1), consider the set E; as above. As in the proof of Theorem 3.2, it suffices to
show that

1 1/q
iy 55 | £ (Rp @@ @] =0 0

r=04>1 ¢

for xyp € R" — (Ef U Fy), wheref, = JIXB(xo,2r)- Here note from Lemmas 2.7 and
2.8 that Cy0,(E; U Fy) = 0. We see from (2.4) with ¢(t) = ¢(t)~" that for § > 0,

t(t) < Ct'°  whenever t > 1.

12



Hence Lemma 4.4 implies that

i | f AR RS ) i "o (45)

r—0 ql/ﬁ

for each ¢ > 1 and all zy € R™\ F}.
First we consider the case when 1 is nondecreasing. If p < ¢ < oo and 0 < § <
1, then, as in the proof of Theorem 3.2, we have by (3.3)

1/q
i/ (Ra (@) ds]
{z€B(zo,r):Ra fr(x)>1}

< W(5) {7{3 . {Ro fr() 01 d:r] "

fo<dy<p—1, ¢ =p—1/¢g>1and ¢ = q(1 + ) with 0 < § < &y, then we
have by (4.1)

1/Q2
[][ {Rufr(z)}* dx} < Or®
B(zo,r)

n 1/p 1/p
+C{/ sa(t)l/(p”tldt} {/ @, (f(y)) dy}
1 {yeB(wo,2r):1<f(y)<n}

" a
_'_Cran 51 {][ f(y>Q1 dy}
{yeB(x0,2r):f(y)>n}

when 1 > 1. For n = r~*0+9) with £ > 0, set

1 1/p' 1/p
F(rizg) =r"+ {/ (’O(t_l)_l/(p_l)t_ldt} {/B( 2 )<I>p(f(y)) dy} ‘

Then Lemma 2.8 implies that F'(r;x¢) tends to zero as r — 0 for zp € R™ \ F}.
Hence we assume that F'(r;x¢) < 1 for small » > 0. Note by Lemmas 4.1 and 4.2
that

t1 < C{p(en)} HPp(t) = C{p(e)} 1@, (t)  fort > 1 (4.6)
and
{p(en}Vm < Clp(en)} 7. (4.7)
Collecting these facts, we have
1/q
f AR RS ) d
) 1/q
< v+ [f {Rafy @)} do
{z€B(zo,r):Ra fr(x)>1}

13



/¢ 1+6
< C+U(3) |C+Cq” {ra/q / fy)® dy}
{yeB(xo,2r):f(y)>n}

< cud) |+ Coptent o { |

yEB(z0,2r):f(y)>n}

1/Q1 1+4
P elr £ () dy} ]

< C+CY0)+C [\11(5)(11/13’{90(661)}—1/13] 1o {/B o, (F(1)) dy}(1+5)/q1

(z0,2r)

since o(rf(y)) < @(f(y)7+)) < Co(f(y)) when f(y) > n = r=*(*). Conse-
quently, if we take § = (log )™, then it follows from (4.2) that

| f (RS @R )" ta] "

a>q0 4
, 1/p
< 0<qa”ﬁ+qa”p>+0{ /B ( 2)¢’p(f(y)) dy}

for ¢ > qo > 1 and 0 < r < 1 when ¢ is sufficiently large. This together with (4.5)
readily yields (4.4).

Next we consider the case when 1 is nonincreasing. If n > 1, then we have by
(2.4) with ¢ =1, (4.3), (4.6) and (4.7)

Hg(m) {Rof ()0 (Rafo(2))} dx] 1/q

< Cmbln) + () []{ (Rofi (@)} s "

zE€B(zo,r):Ra fr(x)>n}

v ol { [

yEB(mo,Qr):f(y)Zr—@(l-‘rE)}

1/p
3,(/(4)) dy}

< Cnp(n) + C(n)

1/q1
3,(/(4)) dy} ]

< Cnbn) + Com)e " {p(en} { /

(z0,2r)
for ¢ > p and ¢; = p — 1/q. Now we take n = ¢'/# and obtain by (2.2) on v and
(4.3)

|1, ARSI )Y is] "

< cwa/ﬁ)w{ | auw dy}l/p,

(z0,21)

which together with (4.5) gives (4.4).
Thus Theorem 4.5 is obtained by Lemma 2.3. U

14



COROLLARY 4.6. Let f be a nonnegative measurable function on R" satisfying
(1.1) and (2.1) when a < 0 or whena =0 andb< 0. Ifap=mn, f=p/(p—1—a)
and y=0b/(p—1—a), then

lim {exp(A|Raf (2) = Raf (x0)|’ (log(e +| Ra f(x) = Raf(x0)]))") = 1} da = 0

r—0 B(zo,r)

holds for Cy, ¢,-quasi every xo € R" and all A > 0.

This follows from Theorem 4.5, as in the proof of Corollary 3 in [14].

Proor oF THEOREM A. Theorem A follows from Corollaries 3.3 and 4.6. [

5 Vanishing double exponential integrability

In this section, we discuss the vanishing double exponential integrability as an
application of our previous considerations. Before doing so, we quote the following
result.

LEMMA 5.1 ([14, Lemma 7]). If a > e, then

o0

Z i ™ (logm)™ < a®®.

ml
m=0

Our aim in this section is to establish the following result.

THEOREM 5.2. Let ap = n. Let ¢ be a positive nondecreasing function on
0, 00) satistying (2.2). For (3 > 0, let ¢ be a positive monotone function on [0, c0)
of log-type which satisfies one of the following conditions:

(i) v is nondecreasing and

ed 1-1/p
lim sup (log ¢)~"?¥((loglogq)™") (/ go(t)l/(pl)tldt) < o0; (5.1)
q—00 1
(ii) v is nonincreasing, lim ¥ (r) = 0 and
ed 1-1/p
limsup (logq)~*?4(logq) (/ @(t)l/(pl)tldt) < 0. (5.2)
g—00 1

If f is a nonnegative measurable function on R" satisfying (1.1) and (2.1), then

i (oA (BIRS ()~ R ro)l6(Raf (1)~ Raf (7))~ e =0
’ (5.3)
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holds for Cy ¢,-q.€. 9 € R" and all A, B > 0.

PROOF. Let f be a nonnegative measurable function on R"™ satisfying (1.1)
and (2.1). For zy € R" — E}, we write

Rof(z) = Rof(x0) = Ui(x)+ Us(z)

as in the proof of Theorem 3.2. Then we know that

leIal Uy(xz) =0 (5.4)
and
Vi) [ o=yt ) dy = Rafi(o) (5:5)
B(zo,2r)

for © € B(xy,r). For simplicity, set

V(ZL‘) = |Raf(x) - Raf(Io)|@/)(|Raf(l") - Raf(xO)D»
Vi(z) = Ui(x)y(Ui()),
Vao(z) = |Ua(2)[(|Us(2)]).

Then we see that V(z) < c{Vi(z) + Va(z)}. If A’ > A and B’ = B(2¢)?, then we
can find r > 0 so small that

Aexp(B'Vy(x)?) < A’
whenever z € B(xg,r). Note that

exp(Aexp(BV (z)7)) — e
< exp(Aexp(BVA(r) + BVa(x)?)) — ¢
< (exp A){exp(A(exp(B'Vi(z)?) — 1) — 1} 4 exp(A exp(B'Vy(2)?)) — et

for x € B(zg,r). Consequently, in view of Lemma 2.3 and (5.4), it suffices to show
that

1/q
imsup L {ep(BRA 0L < 1) de] =0
B(zo,r)

r—0 >1 q

for every B > 0. For this purpose, since (t — 1)? < 7 — 1 for ¢ > 1, we have only
to prove

) 1 1/q

111% sup — {][ {exp(Bq(Ro fr(2)¢(Rafr(2)))?) — 1} dx} = 0. (5.6)
=Y ¢>1 4 |JB(xo,r)

Theorem 3.2 implies that

1/q
gt [f oGy Raf et @) -1} as] =0 6)
B(zo,r)

r—0 ¢

16



for each fixed ¢ > 1. By the power series expansion of e*, we have

]{3( ){GXP(BQ(RafT(x)w(Ra £(2)))?) — 1} dw

SO (GO BN ENIETENAE)

m=1

First we consider the case when 1 is nondecreasing. If p < ¢ < oo and 0 < § <
1, then we have by (3.3)

biuw) (Rl (a0l Rofo ()} o :

1/q
< w() [][ [Rufi (@)}’ dw}
{z€B(x0,r):Ra fr(z)<1}

v () [ (R f,(2)}2079 dx] "

f{IGB(IO,T’)iRafT(x)>1}

Lemma 3.1 gives

7 1/p' 1/p
< COre +C{/ w(t)‘l/(p‘”t‘ldt} {/ @,(f(y)) dy}
1 {y€B(z0,27):1< f(y)<n}

+Cq P ()} {/{ ©p(f(y)) dy}l/p :

yEB(w0,2r): f(y)>ed}

For n = e? we have by (2.5)

/ AR A i "

el 1/p' 1/p
< Oraw{ / go<t>1/<pl>tldt} { [ auw dy}
1 B(zo,2r)

] 1/{q(1+9)}

and

l][ {Rafr(x)}q(Ht?) dr
B(zo,r)

ed /v 1/p
< Cre4C { / o)™ ‘p”tldt} { / ®,(f(y)) dy}
1 {y€B(z0,2r):1< f(y)<ed}

1/p
O+ ) plen} { /{ 3,(f(y)) dy}

yeB(wo,2r):f(y)>e}

el 1/p 1/p
< el [Cewreal ([ aga)a)
1 B(zo,2r)

17



If we now take ¢ = (loglogq)~! for large ¢, then

1/q
/ AR RS ) dm] < Cllogg) PGy (59)

for small » > 0, by use of (5.1) and the fact that (logq)1°s°29™" is hounded for

1/p
large ¢, where G(r) = r® + {/ D,(f(y)) dy} < 1. We replace ¢ by fm in
B

inequality (5.9) to obtain

(z0,2r)

1/(Bm)
] < CG(r)(log(e +m))"?.

{7[ {Rafr(@)(Rafr(2))}"™ do
B(zo,r)
We see from Lemma 5.1 that

]{B( ){eXp(BQ(RafT($)¢(Rafr(x))ﬁ) 1) d

< 30— (B)mOGE) logle + )

m=1
00

- ¥ %(BCG(r)ﬁq)m(log(e +m))™

< O+ {BCG(r)’q} ¢
Hence, if 7 is so small that BCG(r)® < 1/2, then

L 1/q
q [7[( : {exp(BqR, fr(x)") — 1} dg;] < Cq~! + OgBeeE’ -1
B(xo,r

which together with (5.7) proves (5.6), as required.
Next we consider the case when % is nonincreasing. In this case we see from
Corollary 2.6 that

i |/ AR RS )Y a "o (5.10)

r—0 ql/ﬁ

for each fixed ¢ > 1. We have by (2.4) with ¢ = ¢

Mmm {Rafr (@) (Rafi(2))* dai] )

< o+ v |f  {Rap) dx]l/q

(mo,r)
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for n > 1. If ¢7 > n > 1, then we have by Lemma 3.1 and (2.5)

1/q
{][ {Rofr(x)}? da:] < Cnr®
B(zo,r)

ed , l/p, 1/p
+c{ / so(tw/ptldt} { / ) dy} |
1 {yeB(zo,2r):f(y)>n}

1/q
F ARSURSY ds] < o)1+

rov { | . go(tw’/ptldt}l/p/ {/ ) dy}l/p.

Now we take 7 = (log ¢)'/? to obtain by (2.2) on ¢ and (5.2)

so that

{]{B(zo,r) {Rof, (2)0(Raf, (1))} da:} 1/q

< C(logq)'’ lw(logQ) + { /B @,(f(y)) dy}l/p] :

(z0,27)
Now we obtain (5.6) as in the first part of the proof.

Thus the required assertion follows from Lemma 2.3. 0

COROLLARY 5.3. Let f be a nonnegative measurable function on R" satisfying
(1.1) and

f(y)Pllog(e + f(y))]P~ log(e + log(e + f(y)))]"

R"
x [log(e + log(e + (log(e + f(y)))))]* dy < oo
for some numbersb and c. If ap =n,b < p—1, 3 =p/(p—1-b) andy = ¢/(p—1-D),
then

lim {exp(Aexp(B|Rof(x) — Ra f(x0)|”
r= B(zo,r)

x(log(e + |Raf(z) — Ra(x0)]))")) — e} dz =0 (5.11)

holds for Cy, ¢,-quasi every xo € R" and all A, B > 0.
In fact, let ¢(t) = (logt)?~!(loglogt)’(logloglogt)¢ when t > t; > e and
o(t) = p(to) when t < to. If ty is sufficiently large, then ¢ is nondecreasing.

In this case, it suffices to consider 1 (t) = {log(e + )}*? and hence W(§) = C5~/P
when ¢ > 0.

PrROOF OF THEOREM B. Theorem B is nothing but Corollary 5.3 when ¢ = 0.
O
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