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Abstract

Our aim in this paper is to show the vanishing exponential integrability
for Riesz potentials of functions in Orlicz classes, as an improvement of
continuity results of Sobolev functions. We also show the vanishing double
exponential integrability.

1 Introduction

For 0 < α < n, we define the Riesz potential of order α for a nonnegative measur-
able function f on Rn by

Rαf(x) =

∫
|x− y|α−nf(y) dy.

Here we assume that Rαf �≡ ∞, or equivalently,∫
(1 + |y|)α−nf(y) dy <∞; (1.1)

for this fact, see [11, Theorem 1.1, Chapter 2]. In the present paper, we deal with
functions f satisfying the Orlicz condition of the form :∫

Φp(f(y)) dy <∞, (1.2)

where Φp(r) is of the form rpϕ(r) with 1 < p < ∞. Exact condition on ϕ will be
given in the next section (see (2.2) below). For a set E ⊂ Rn and an open set
G ⊂ Rn, we define

Cα,Φp(E;G) = inf
g

∫
G

Φp(g(y)) dy,
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where the infimum is taken over all nonnegative measurable functions g on Rn such
that g vanishes outside G and Rαg(x) ≥ 1 for every x ∈ E (cf. Meyers [8] and the
first author [11]). We say that E is of Cα,Φp-capacity zero if Cα,Φp(E ∩ G;G) = 0
for every bounded open set G. A property is said to hold Cα,Φp-quasi everywhere
in G if it holds on G except for a set of Cα,Φp-capacity zero.

For a measurable function u on Rn, we define the integral mean over a mea-
surable set E ⊂ Rn of positive measure by

−
∫

E

u(x) dx =
1

|E|
∫

E

u(x) dx.

A famous Trudinger inequality ([16]) insists that Sobolev functions in W 1,n

satisfy finite exponential integrability (see also [1], [3], [13], [17]). Recently great
progress has been made for Riesz potentials in the limiting case αp = n (see e.g.
[4], [5], [6], [12], [14]). In this paper, we are concerned with continuity (or differ-
entiability) property for Riesz potentials and aim to show vanishing exponential
integrabilities, as an improvement of the result by Adams and Hurri-Syrjänen [2,
Theorem 1.6]. In fact we give the following two results as corollaries of more gen-
eral theorems on Riesz potentials of Orlicz functions (see Theorems 3.2, 4.5 and
5.2 below).

Theorem A. Let f be a nonnegative measurable function on Rn satisfying
(1.1) and the Orlicz condition∫

Rn

f(y)p[log(e+ f(y))]a[log(e + log(e+ f(y)))]b dy <∞ (1.3)

for some numbers p, a and b. If αp = n, a < p − 1, β = p/(p − 1 − a) and
γ = b/(p− 1 − a), then

lim
r→0

−
∫

B(x0,r)

{
exp(A|Rαf(x) −Rαf(x0)|β(log(e + |Rαf(x) − Rαf(x0)|))γ) − 1

}
dx = 0

(1.4)
holds for Cα,Φp-quasi every x0 ∈ Rn and all A > 0.

We see that (1.4) is true for every β > 0 (and γ > 0) when a = p− 1. In case
a > p− 1, we know that Rαf is continuous on Rn (see [9] and [15]).

In case a = p − 1, we are also concerned with vanishing double exponential
integrability.

Theorem B. Let f be a nonnegative measurable function on Rn satisfying
(1.1) and the Orlicz condition∫

Rn

f(y)p[log(e+ f(y))]p−1[log(e+ log(e+ f(y)))]b dy <∞

for some numbers p and b. If αp = n, b < p− 1 and β = p/(p− 1 − b), then

lim
r→0

−
∫

B(x0,r)

{
exp(A exp(B|Rαf(x) − Rαf(x0)|β)) − eA

}
dx = 0 (1.5)
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holds for Cα,Φp-quasi every x0 ∈ Rn and all A,B > 0.

In case b > p − 1, Rαf is continuous on Rn (see [9] and [15]), so that (5.11)
holds for every x0 ∈ Rn and β > 0.

2 Orlicz functions

We deal with functions f satisfying the Orlicz condition :∫
Φp(f(y)) dy <∞. (2.1)

Here Φp(r) is of the form rpϕ(r), where 1 < p < ∞ and ϕ is a positive monotone
function on the interval [0,∞) of log-type; that is, there exists a positive constant
M such that

M−1ϕ(r) ≤ ϕ(r2) ≤Mϕ(r) for r > 0. (2.2)

It follows from condition (2.2) that ϕ satisfies the doubling condition, that is,

C−1ϕ(r) ≤ ϕ(2r) ≤ Cϕ(r) for r > 0, (2.3)

where C is a positive constant. If δ > 0, then, in view of [11], we can find a positive
constant C = C(δ) for which

sδϕ(s) ≤ Ctδϕ(t) whenever t > s > 0. (2.4)

This implies that
lim
r→0

Φp(r) = 0 (= Φp(0)) .

If ϕ is nondecreasing, then we have for η > 1,

(∫ η

1

ϕ(r)−p′/pr−1dr

)1/p′

≥ ϕ(η)−1/p(log η)1/p′, (2.5)

where p′ denotes the Hölder conjugate, that is, 1/p+ 1/p′ = 1.
For a measurable set E ⊂ Rn, denote by |E| the Lebesgue measure of E, and

by B(x, r) the open ball centered at x with radius r. Further we use the symbol
C to denote a positive constant whose value may change line to line.

Let us give two fundamental facts:

Lemma 2.1 (cf. [11, Remark 1.2, p.60]). There exists C > 0 such that∫
E

|x− y|α−n dy ≤ C|E|α/n for every measurable set E ⊂ Rn.
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Lemma 2.2 (cf. [9], [14]). Let αp = n. If f is a nonnegative measurable
function on an open set G and η ≥ 2, then∫

{y∈G:1<f(y)<η}
|x− y|α−nf(y) dy

≤ C

(∫ η

1

ϕ(r)−p′/pr−1dr

)1/p′ (∫
G

Φp(f(y)) dy

)1/p

,

where C is a positive constant independent of f , η and G.

We prepare some lemmas which are used to establish vanishing exponential
integrabilities for Riesz potentials.

Lemma 2.3 (cf. [6], [7], [14]). Let G be a bounded open set in Rn. For x0 ∈ G
and a nonnegative measurable function u on G, the following are equivalent:

(i) lim
r→0

−
∫

B(x0,r)

{exp(Au(x)) − 1} dx = 0 for every A > 0;

(ii) lim
r→0

sup
q≥1

1

q

(
−
∫

B(x0,r)

u(x)q dx

)1/q

= 0.

Proof. First suppose (i) holds. By the power series expansion of ex, we have

−
∫

B(x0,r)

{exp(Au(x)) − 1} dx =
∞∑

q=1

1

q!
−
∫

B(x0,r)

{Au(x)}q dx.

Set

ε1(r) = −
∫

B(x0,r)

{exp(Au(x)) − 1} dx.

Then note that limr→0 ε1(r) = 0 by our assumption. By Stirling’s formula, we have

1

qq
−
∫

B(x0,r)

u(x)q dx ≤ Cε1(r)
√
qe−qA−q

for q ≥ 1, so that

sup
q≥1

1

q

(
−
∫

B(x0,r)

u(x)q dx

)1/q

≤ CA−1

for small r > 0. Since A is arbitrary, we see that

lim
r→0

sup
q≥1

1

q

(
−
∫

B(x0,r)

u(x)q dx

)1/q

= 0,

as required.
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Conversely, suppose (ii) holds. Set

ε2(r) = sup
q≥1

1

q

(
−
∫

B(x0,r)

u(x)q dx

)1/q

.

Then note that limr→0 ε2(r) = 0 by (ii). By Stirling’s formula again, we have

−
∫

B(x0,r)

{exp(Au(x)) − 1} dx =
∞∑

q=1

1

q!
−
∫

B(x0,r)

{Au(x)}q dx

≤ C

∞∑
q=1

{eAε2(r)}q.

We insist that the last series converges when eAε2(r) < 1 and it tends to zero with
r, since limr→0 ε2(r) = 0. �

Corollary 2.4. Let G be a bounded open set in Rn. For β > 0, x0 ∈ G and
a nonnegative measurable function u on G, the following are equivalent:

(i) lim
r→0

−
∫

B(x0,r)

{exp(Au(x)β) − 1} dx = 0 for every A > 0;

(ii) lim
r→0

sup
q≥1

1

q1/β

(
−
∫

B(x0,r)

u(x)q dx

)1/q

= 0.

Lemma 2.5 (cf. e.g. [17, p.89]). Let G be a bounded open set in Rn and
0 < θ < 1. Then[∫

G

{Rαf(x)}q2 dx

]1/q2

≤ Cq2
1−1/q1

{∫
G

f(y)q1 dy

}1/q1

whenever 1 ≤ q1 < q2 < ∞, 1/q1 − α/n ≤ (1 − θ)/q2 and f is a nonnegative
measurable function on G, where C is a positive constant independent of q1, q2
and f .

By change of variables, we can prove the following result.

Corollary 2.6. If αp = n, then[
−
∫

B(x0,r)

{Rαf(x)}q dx

]1/q

≤ Cq1/p′
{∫

B(x0,r)

f(y)p dy

}1/p

whenever q ≥ 1 and f is a nonnegative measurable function on B(x0, r) with
0 < r < 1.

Consider the set

Ef = {x ∈ Rn :

∫
|x− y|α−nf(y) dy = ∞}.
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The following can be obtained readily from the definition of Cα,Φp; see [11,
Theorem 1.1, Chapter 2].

Lemma 2.7. If f is a nonnegative measurable function on Rn satisfying (1.1)
and (2.1), then

Cα,Φp(Ef ) = 0.

As in the proof of Lemma 7.3 and Corollary 7.2 in [10], we can prove the
following result.

Lemma 2.8. (i) For 0 < r < 1/2, Cα,Φp(B(0, r);B(0, 1)) ≤ Cϕ∗(r)1−p, where

ϕ∗(r) =

∫ 1

r

ϕ(t−1)−1/(p−1)t−1dt.

(ii) For a nonnegative measurable function f on Rn satisfying (2.1), set

Ff = {x ∈ Rn : lim sup
r→0

ϕ∗(r)p−1

∫
B(x,r)

Φp(f(y)) dy > 0}.

Then Cα,Φp(Ff) = 0.

3 Vanishing exponential integrability when ϕ is

nondecreasing

In this section we are concerned with the case when ϕ is nondecreasing.
In view of Lemmas 2.1, 2.2 and Corollary 2.6, we have the following result.

Lemma 3.1. Suppose αp = n and ϕ is nondecreasing. If η2 > η1 ≥ 1 and
η2 > 2, then

[
−
∫

B(x0,r)

{Rαf(x)}q dx

]1/q

≤ Cη1r
α

+ C

{∫ η2

1

ϕ(t)−p′/pt−1dt

}1/p′ {∫
{y∈B(x0,r):η1<f(y)<η2}

Φp(f(y)) dy

}1/p

+ Cq1/p′{ϕ(η2)}−1/p

{∫
{y∈B(x0,r):f(y)≥η2}

Φp(f(y)) dy

}1/p

for all q ≥ 1 and nonnegative measurable functions f on B(x0, r) with 0 < r < 1.

Now we show vanishing exponential integrability when ϕ is nondecreasing.
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Theorem 3.2. Let ϕ be a positive nondecreasing function on [0,∞) of log-type
such that ∫ ∞

1

ϕ(t)−p′/pt−1dt = ∞. (3.1)

Let β > 0 and ψ be a positive monotone function on [0,∞) of log-type which
satisfies one of the following conditions:

(i) ψ is nondecreasing and

lim sup
q→∞

q−1/βΨ((log q)−1)

(∫ eq

1

ϕ(t)−p′/pt−1dt

)1/p′

<∞, (3.2)

where
Ψ(δ) ≡ sup

t>1
t−δψ(t) <∞ for δ > 0. (3.3)

(ii) ψ is nonincreasing, lim
t→∞

ψ(t) = 0 and

lim sup
q→∞

q−1/βψ(q)

(∫ eq

1

ϕ(t)−p′/pt−1dt

)1/p′

<∞. (3.4)

If αp = n and f is a nonnegative measurable function on Rn satisfying (1.1) and
(2.1), then

lim
r→0

−
∫

B(x0,r)

{exp(A(|Rαf(x) − Rαf(x0)|ψ(|Rαf(x) − Rαf(x0)|))β) − 1} dx = 0

holds for Cα,Φp-quasi every x0 ∈ Rn and all A > 0.

Proof. For a nonnegative measurable function f on Rn satisfying (1.1) and
(2.1), consider the set Ef . By Lemma 2.7, Cα,Φp(Ef ) = 0. For x0 ∈ Rn − Ef , we
write

Rαf(x) − Rαf(x0) =

∫
B(x0,2|x−x0|)

|x− y|α−nf(y) dy

+

∫
Rn−B(x0,2|x−x0|)

|x− y|α−nf(y) dy −Rαf(x0)

= U1(x) + U2(x).

If y ∈ Rn−B(x0, 2|x−x0|), then |x0−y| ≤ 2|x−y|, so that we can apply Lebesgue’s
dominated convergence theorem to obtain

lim
x→x0

U2(x) = 0.

This implies that

lim
r→0

sup
q≥1

1

q1/β

[
−
∫

B(x0,r)

{|U2(x)|ψ(|U2(x)|)}q dx

]1/q

= 0. (3.5)
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Note here that

U1(x) ≤
∫

B(x0,2r)

|x− y|α−nf(y) dy ≡ Rαfr(x)

for x ∈ B(x0, r). Hence, in view of Lemma 2.3, it suffices to show that

lim
r→0

sup
q≥1

1

q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

= 0. (3.6)

First we consider the case when ψ is nondecreasing. If p < q <∞ and 0 < δ <
1, then we have by (3.3)[

−
∫

B(x0 ,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ ψ(1)

[
−
∫
{x∈B(x0,r):Rαfr(x)≤1}

{Rαfr(x)}q dx

]1/q

+Ψ(δ)

[
−
∫
{x∈B(x0,r):Rαfr(x)>1}

{Rαfr(x)}q(1+δ) dx

]1/q

. (3.7)

It follows from Corollary 2.6 that

lim
r→0

[
−
∫

B(x0,r)

{Rαfr(x)}q dx

]1/q

= 0,

which implies that

lim
r→0

1

q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

= 0 (3.8)

for each fixed q ≥ 1.
For η > 2, 0 < δ < 1 and 0 < r < 1, we see from (3.7) and Lemma 3.1 that[

−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ ψ(1) + Ψ(δ)

[
−
∫

B(x0,r)

{Rαfr(x)}q(1+δ) dx

]1/q

≤ C + CΨ(δ)

[
rα +

{∫ η

1

ϕ(t)−p′/pt−1dt

}1/p′

×
{∫

{y∈B(x0,2r):1≤f(y)<η}
Φp(f(y)) dy

}1/p

+ q1/p′{ϕ(η)}−1/p

{∫
{y∈B(x0,2r):f(y)≥η}

Φp(f(y)) dy

}1/p
]1+δ

.
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If we take η = eq and δ = (log q)−1 < 1, then we have by (2.5) and (3.2)

q−1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ Cq−1/β + CrαΨ((log q)−1)q−1/β

+ C

[
Ψ((log q)−1)q−1/β

{∫ eq

1

ϕ(t)−p′/pt−1dt

}1/p′]1+(log q)−1

×
{∫

B(x0,2r)

Φp(f(y)) dy

}(1+(log q)−1)/p

≤ Cq−1/β + CrαΨ((log q)−1)q−1/β + C

{∫
B(x0,2r)

Φp(f(y)) dy

}(1+(log q)−1)/p

.

For ε > 0, take q0 > e such that Ψ((log q)−1)q−1/β < ε whenever q ≥ q0. Then it
follows that

sup
q≥q0

1

q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ Cε(1 + rα) + C

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

,

which together with (3.8) implies (3.6).
Next we consider the case when ψ is nonincreasing. In this case we see from

Corollary 2.6 that

lim
r→0

1

q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

= 0 (3.9)

for each fixed q ≥ 1. We have by (2.4) with ϕ = ψ

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ Cηψ(η)

+ ψ(η)

[
−
∫

B(x0,r)

{Rαfr(x)}q dx

]1/q

for η > 1. If eq > η > 1, then we have by Lemma 3.1 and (2.5)

[
−
∫

B(x0,r)

{Rαfr(x)}q dx

]1/q

≤ Cηrα

+ C

{∫ eq

1

ϕ(t)−p′/pt−1dt

}1/p′ {∫
{y∈B(x0,2r):f(y)≥η}

Φp(f(y)) dy

}1/p

,
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so that [
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ Cηψ(η)(1 + rα)

+ Cψ(η)

{∫ eq

1

ϕ(t)−p′/pt−1dt

}1/p′ {∫
B(x0,2r)

Φp(f(y)) dy

}1/p

.

Now we take η = q1/β to obtain by (2.2) on ψ and (3.4)

sup
q≥q0

1

q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ Cψ(q
1/β
0 )(1 + rα) + C

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

,

which together with (5.10) yields (3.6).
Now we obtain the required assertion from Lemma 2.3. �

Corollary 3.3. Let f be a nonnegative measurable function on Rn satisfying
(1.1) and (2.1) when 0 < a < p− 1 or when a = 0 and b ≥ 0. If αp = n, then

lim
r→0

−
∫

B(x0,r)

{exp(A|Rαf(x)−Rαf(x0)|β(log(e+ |Rαf(x)−Rαf(x0)|))γ)−1} dx = 0

holds for Cα,Φp-quasi every x0 ∈ Rn and all A > 0, where β = p/(p − 1 − a) and
γ = b/(p− 1 − a).

Corollary 3.3 follows from Theorem 3.2, as in the proof of Corollary 2 in [14].
In fact, let ϕ(t) = (log t)a(log log t)b when t ≥ t0 > e and ϕ(t) = ϕ(t0) when

t < t0. If t0 is sufficiently large, then ϕ is nondecreasing. In this case, it suffices to
consider ψ(t) = {log(e+ t)}b/p and hence Ψ(δ) = δ−b/p when b > 0.

Remark 3.4. If αp = n and (3.1) does not hold, then it is known (cf. [9] and
[15]) that Rαf is continuous on Rn, so that the conclusion of Theorem 3.2 remains
true.

4 Vanishing exponential integrability when ϕ is

nonincreasing

In this section let ϕ be a positive nonincreasing function on [0,∞) satisfying (2.2).
In this case we need the following easy facts.

Lemma 4.1 ([14, Lemma 5]). If q > 0, then

t−1/qϕ(eq) ≤ Cϕ(t) whenever t > 1.
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Lemma 4.2 ([14, Lemma 6]). lim
q→∞

{ϕ(eq)}1/q = 1 .

By Lemma 2.5 and change of variables, we have the next result.

Lemma 4.3. Let 0 < θ < 1. If 0 < r < 1, then[
−
∫

B(x0,r)

{Rαf(x)}q2 dx

]1/q2

≤ Crαq2
1−1/q1

{
−
∫

B(x0,r)

f(y)q1 dy

}1/q1

whenever 1 ≤ q1 < q2 < ∞, 1/q1 − α/n ≤ (1 − θ)/q2 and f is a nonnegative
measurable function on B(x0, r), where C is a positive constant independent of q1,
q2, r and f .

Let f be a nonnegative measurable function on Rn satisfying (1.2), and let
p = n/α > 1. In view of Lemmas 2.1, 2.2 and 4.3, we have

[
−
∫

B(x0,r)

{Rαfr(x)}q2 dx

]1/q2

≤ Crα

+ C

{∫ η

1

ϕ(t)−p′/pt−1dt

}1/p′ {∫
{y∈B(x0,2r):1<f(y)<η}

Φp(f(y)) dy

}1/p

+ Crαq
1−1/q1
2

{
−
∫
{y∈B(x0,2r):f(y)≥η}

f(y)q1 dy

}1/q1

(4.1)

for 0 < r < 1 and η > 2, whenever 1 ≤ q1 < q2 <∞ and 1/q1 − α/n ≤ (1 − θ)/q2,
where fr = fχB(x0,2r) with χE denoting the characteristic function of E. If we take
η = r−α(1+ε) with ε > 0, then

ϕ(rαf(y)) ≤ ϕ(f(y)ε/(1+ε)) ≤ Cϕ(f(y)) when f(y) ≥ η.

Let 1 < q1 < p = n/α, 1/q∗1 = 1/q1 − α/n > 0 and set q0 = (1 − θ)q∗1. Then it
follows from (2.4) that

rαq1−n

∫
{y∈B(x0,2r):f(y)≥η}

f(y)q1 dy ≤ C

∫
B(x0,2r)

Φp(f(y)) dy,

so that [
−
∫

B(x0,r)

{Rαfr(x)}q dx

]1/q

≤ Crα

+ C

{∫ 1

r

ϕ(t−1)−p′/pt−1dt

}1/p′ {∫
B(x0,2r)

Φp(f(y)) dy

}1/p

+ Cq
1−1/p
0

{∫
B(x0,2r)

Φp(f(y)) dy

}1/q1
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for all q such that 1 ≤ q ≤ q0.
Therefore we obtain the following result with the aid of Lemma 2.8.

Lemma 4.4. Suppose αp = n. If f is a nonnegative measurable function on
Rn satisfying (2.1), then

lim
r→0

−
∫

B(x0,r)

{Rαfr(x)}q dx = 0

holds for x0 ∈ Rn \ Ff and 1 ≤ q <∞, where fr = fχB(x0,2r).

We are now ready to treat the case when ϕ is nonincreasing.

Theorem 4.5. Let ϕ be a positive nonincreasing function on [0,∞) of log-
type. Let β > 0 and ψ be a positive monotone function on [0,∞) of log-type which
satisfies one of the following conditions:

(i) ψ is nondecreasing and

lim sup
q→∞

q−1/β+1/p′Ψ((log q)−1){ϕ(eq)}−1/p <∞ (4.2)

with Ψ given by (3.3);

(ii) ψ is nonincreasing, lim
r→∞

ψ(r) = 0 and

lim sup
q→∞

q−1/β+1/p′ψ(q){ϕ(eq)}−1/p <∞. (4.3)

If αp = n and f is a nonnegative measurable function on Rn satisfying (1.1) and
(2.1), then

lim
r→0

−
∫

B(x0,r)

{exp(A(|Rαf(x) − Rαf(x0)|ψ(|Rαf(x) − Rαf(x0)|))β) − 1} dx = 0

holds for Cα,Φp-q.e. x0 ∈ Rn and all A > 0.

Proof. For a nonnegative measurable function f on Rn satisfying (1.1) and
(2.1), consider the set Ef as above. As in the proof of Theorem 3.2, it suffices to
show that

lim
r→0

sup
q≥1

1

q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

= 0 (4.4)

for x0 ∈ Rn − (Ef ∪ Ff ), wherefr = fχB(x0,2r). Here note from Lemmas 2.7 and
2.8 that Cα,Φp(Ef ∪ Ff) = 0. We see from (2.4) with ϕ(t) = ψ(t)−1 that for δ > 0,

tψ(t) ≤ Ct1+δ whenever t ≥ 1.
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Hence Lemma 4.4 implies that

lim
r→0

1

q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

= 0 (4.5)

for each q ≥ 1 and all x0 ∈ Rn \ Ff .
First we consider the case when ψ is nondecreasing. If p < q <∞ and 0 < δ <

1, then, as in the proof of Theorem 3.2, we have by (3.3)

[
−
∫
{x∈B(x0,r):Rαfr(x)>1}

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ Ψ(δ)

[
−
∫

B(x0,r)

{Rαfr(x)}q(1+δ) dx

]1/q

.

If 0 < δ0 < p − 1, q1 = p − 1/q > 1 and q2 = q(1 + δ) with 0 < δ < δ0, then we
have by (4.1)

[
−
∫

B(x0,r)

{Rαfr(x)}q2 dx

]1/q2

≤ Crα

+ C

{∫ η

1

ϕ(t)−1/(p−1)t−1dt

}1/p′ {∫
{y∈B(x0,2r):1<f(y)<η}

Φp(f(y)) dy

}1/p

+ Crαq
1/q′1
2

{
−
∫
{y∈B(x0 ,2r):f(y)≥η}

f(y)q1 dy

}1/q1

when η > 1. For η = r−α(1+ε) with ε > 0, set

F (r; x0) = rα +

{∫ 1

r

ϕ(t−1)−1/(p−1)t−1dt

}1/p′ {∫
B(x0,2r)

Φp(f(y)) dy

}1/p

.

Then Lemma 2.8 implies that F (r; x0) tends to zero as r → 0 for x0 ∈ Rn \ Ff .
Hence we assume that F (r; x0) < 1 for small r > 0. Note by Lemmas 4.1 and 4.2
that

tq1 ≤ C{ϕ(eq)}−1tpϕ(t) = C{ϕ(eq)}−1Φp(t) for t > 1 (4.6)

and
{ϕ(eq)}−1/q1 ≤ C{ϕ(eq)}−1/p. (4.7)

Collecting these facts, we have

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ ψ(1) + Ψ(δ)

[
−
∫
{x∈B(x0,r):Rαfr(x)>1}

{Rαfr(x)}q(1+δ) dx

]1/q

13



≤ C + Ψ(δ)

[
C + Cq1/p′

{
r−α/q

∫
{y∈B(x0,2r):f(y)≥η}

f(y)q1 dy

}1/q1
]1+δ

≤ C + Ψ(δ)

[
C + Cq1/p′{ϕ(eq)}−1/q1

{∫
{y∈B(x0,2r):f(y)≥η}

f(y)pϕ(rαf(y)) dy

}1/q1
]1+δ

≤ C + CΨ(δ) + C
[
Ψ(δ)q1/p′{ϕ(eq)}−1/p

]1+δ
{∫

B(x0,2r)

Φp(f(y)) dy

}(1+δ)/q1

since ϕ(rαf(y)) ≤ ϕ(f(y)ε/(1+ε)) ≤ Cϕ(f(y)) when f(y) ≥ η = r−α(1+ε). Conse-
quently, if we take δ = (log q)−1, then it follows from (4.2) that

sup
q≥q0

1

q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ C(q
−1/β
0 + q

−1/p′
0 ) + C

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

for q ≥ q0 > 1 and 0 < r < 1 when q0 is sufficiently large. This together with (4.5)
readily yields (4.4).

Next we consider the case when ψ is nonincreasing. If η > 1, then we have by
(2.4) with ϕ = ψ, (4.3), (4.6) and (4.7)

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ Cηψ(η) + ψ(η)

[
−
∫
{x∈B(x0,r):Rαfr(x)≥η}

{Rαfr(x)}q dx

]1/q

≤ Cηψ(η) + Cψ(η)

[
1 + q1/p′{ϕ(eq)}−1/p

{∫
{y∈B(x0,2r):f(y)≥r−α(1+ε)}

Φp(f(y)) dy

}1/q1
]

≤ Cηψ(η) + Cψ(η)q1/p′{ϕ(eq)}−1/p

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

for q > p and q1 = p − 1/q. Now we take η = q1/β and obtain by (2.2) on ψ and
(4.3)

1

q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ Cψ(q1/β) + C

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

,

which together with (4.5) gives (4.4).
Thus Theorem 4.5 is obtained by Lemma 2.3. �
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Corollary 4.6. Let f be a nonnegative measurable function on Rn satisfying
(1.1) and (2.1) when a < 0 or when a = 0 and b < 0. If αp = n, β = p/(p− 1− a)
and γ = b/(p− 1 − a), then

lim
r→0

−
∫

B(x0,r)

{exp(A|Rαf(x)−Rαf(x0)|β(log(e+ |Rαf(x)−Rαf(x0)|))γ)−1} dx = 0

holds for Cα,Φp-quasi every x0 ∈ Rn and all A > 0.

This follows from Theorem 4.5, as in the proof of Corollary 3 in [14].

Proof of Theorem A. Theorem A follows from Corollaries 3.3 and 4.6. �

5 Vanishing double exponential integrability

In this section, we discuss the vanishing double exponential integrability as an
application of our previous considerations. Before doing so, we quote the following
result.

Lemma 5.1 ([14, Lemma 7]). If a > e, then

∞∑
m=0

1

m!
am(logm)m � aCa.

Our aim in this section is to establish the following result.

Theorem 5.2. Let αp = n. Let ϕ be a positive nondecreasing function on
[0,∞) satisfying (2.2). For β > 0, let ψ be a positive monotone function on [0,∞)
of log-type which satisfies one of the following conditions:

(i) ψ is nondecreasing and

lim sup
q→∞

(log q)−1/βΨ((log log q)−1)

(∫ eq

1

ϕ(t)−1/(p−1)t−1dt

)1−1/p

<∞; (5.1)

(ii) ψ is nonincreasing, lim
r→∞

ψ(r) = 0 and

lim sup
q→∞

(log q)−1/βψ(log q)

(∫ eq

1

ϕ(t)−1/(p−1)t−1dt

)1−1/p

<∞. (5.2)

If f is a nonnegative measurable function on Rn satisfying (1.1) and (2.1), then

lim
r→0

−
∫

B(x0,r)

{exp(A exp(B(|Rαf(x)−Rαf(x0)|ψ(|Rαf(x)−Rαf(x0)|))β))−eA}dx = 0

(5.3)
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holds for Cα,Φp-q.e. x0 ∈ Rn and all A,B > 0.

Proof. Let f be a nonnegative measurable function on Rn satisfying (1.1)
and (2.1). For x0 ∈ Rn −Ef , we write

Rαf(x) − Rαf(x0) = U1(x) + U2(x)

as in the proof of Theorem 3.2. Then we know that

lim
x→x0

U2(x) = 0 (5.4)

and

U1(x) ≤
∫

B(x0,2r)

|x− y|α−nf(y) dy ≡ Rαfr(x) (5.5)

for x ∈ B(x0, r). For simplicity, set

V (x) = |Rαf(x) − Rαf(x0)|ψ(|Rαf(x) − Rαf(x0)|),
V1(x) = U1(x)ψ(U1(x)),

V2(x) = |U2(x)|ψ(|U2(x)|).
Then we see that V (x) ≤ c{V1(x) + V2(x)}. If A′ > A and B′ = B(2c)β, then we
can find r > 0 so small that

A exp(B′V2(x)
β) < A′

whenever x ∈ B(x0, r). Note that

exp(A exp(BV (x)β)) − eA

≤ exp(A exp(B′V1(x)
β +B′V2(x)

β)) − eA

≤ (expA′){exp(A′(exp(B′V1(x)
β) − 1) − 1} + exp(A exp(B′V2(x)

β)) − eA

for x ∈ B(x0, r). Consequently, in view of Lemma 2.3 and (5.4), it suffices to show
that

lim
r→0

sup
q≥1

1

q

[
−
∫

B(x0,r)

{
exp(B(Rαfr(x)ψ(Rαfr(x)))

β) − 1
}q

dx

]1/q

= 0

for every B > 0. For this purpose, since (t − 1)q ≤ tq − 1 for t ≥ 1, we have only
to prove

lim
r→0

sup
q≥1

1

q

[
−
∫

B(x0,r)

{
exp(Bq(Rαfr(x)ψ(Rαfr(x)))

β) − 1
}
dx

]1/q

= 0. (5.6)

Theorem 3.2 implies that

lim
r→0

1

q

[
−
∫

B(x0,r)

{
exp(Bq(Rαfr(x)ψ(Rαfr(x)))

β) − 1
}
dx

]1/q

= 0 (5.7)
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for each fixed q ≥ 1. By the power series expansion of ex, we have

−
∫

B(x0,r)

{exp(Bq(Rαfr(x)ψ(Rαfr(x)))
β) − 1} dx

=
∞∑

m=1

1

m!
(Bq)m −

∫
B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}βm dx. (5.8)

First we consider the case when ψ is nondecreasing. If p < q <∞ and 0 < δ <
1, then we have by (3.3)[

−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ ψ(1)

[
−
∫
{x∈B(x0,r):Rαfr(x)≤1}

{Rαfr(x)}q dx

]1/q

+ Ψ(δ)

[
−
∫
{x∈B(x0,r):Rαfr(x)>1}

{Rαfr(x)}q(1+δ) dx

]1/q

.

Lemma 3.1 gives[
−
∫

B(x0,r)

{Rαfr(x)}q dx

]1/q

≤ Crα + C

{∫ η

1

ϕ(t)−1/(p−1)t−1dt

}1/p′ {∫
{y∈B(x0,2r):1<f(y)≤η}

Φp(f(y)) dy

}1/p

+ Cq1/p′{ϕ(η)}−1/p

{∫
{y∈B(x0,2r):f(y)>eq}

Φp(f(y)) dy

}1/p

.

For η = eq we have by (2.5)[
−
∫

B(x0,r)

{Rαfr(x)}q dx

]1/q

≤ Crα + C

{∫ eq

1

ϕ(t)−1/(p−1)t−1dt

}1/p′ {∫
B(x0,2r)

Φp(f(y)) dy

}1/p

and [
−
∫

B(x0,r)

{Rαfr(x)}q(1+δ) dx

]1/{q(1+δ)}

≤ Crα + C

{∫ eq

1

ϕ(t)−1/(p−1)t−1dt

}1/p′ {∫
{y∈B(x0,2r):1<f(y)≤eq}

Φp(f(y)) dy

}1/p

+ C(q(1 + δ))1/p′{ϕ(eq)}−1/p

{∫
{y∈B(x0,2r):f(y)>eq}

Φp(f(y)) dy

}1/p

≤ Crα + C

{∫ eq

1

ϕ(t)−1/(p−1)t−1dt

}1/p′ {∫
B(x0,2r)

Φp(f(y)) dy

}1/p

.
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If we now take δ = (log log q)−1 for large q, then

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ C(log q)1/βG(r) (5.9)

for small r > 0, by use of (5.1) and the fact that (log q)(log log q)−1
is bounded for

large q, where G(r) = rα +

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p

≤ 1. We replace q by βm in

inequality (5.9) to obtain

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}βm dx

]1/(βm)

≤ CG(r)(log(e +m))1/β.

We see from Lemma 5.1 that

−
∫

B(x0,r)

{exp(Bq(Rαfr(x)ψ(Rαfr(x))
β) − 1} dx

≤
∞∑

m=1

1

m!
(Bq)m{CG(r)β log(e+m)}m

=

∞∑
m=1

1

m!
(BCG(r)βq)m(log(e +m))m

≤ C + {BCG(r)βq}BCG(r)βq.

Hence, if r is so small that BCG(r)β < 1/2, then

1

q

[
−
∫

B(x0,r)

{
exp(BqRαfr(x)

β) − 1
}
dx

]1/q

≤ Cq−1 + CqBCG(r)β−1,

which together with (5.7) proves (5.6), as required.
Next we consider the case when ψ is nonincreasing. In this case we see from

Corollary 2.6 that

lim
r→0

1

q1/β

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

= 0 (5.10)

for each fixed q ≥ 1. We have by (2.4) with ϕ = ψ

[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ Cηψ(η) + ψ(η)

[
−
∫

B(x0,r)

{Rαfr(x)}q dx

]1/q
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for η > 1. If eq > η > 1, then we have by Lemma 3.1 and (2.5)[
−
∫

B(x0,r)

{Rαfr(x)}q dx

]1/q

≤ Cηrα

+ C

{∫ eq

1

ϕ(t)−p′/pt−1dt

}1/p′ {∫
{y∈B(x0,2r):f(y)≥η}

Φp(f(y)) dy

}1/p

,

so that [
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ Cηψ(η)(1 + rα)

+ Cψ(η)

{∫ eq

1

ϕ(t)−p′/pt−1dt

}1/p′ {∫
B(x0,2r)

Φp(f(y)) dy

}1/p

.

Now we take η = (log q)1/β to obtain by (2.2) on ψ and (5.2)[
−
∫

B(x0,r)

{Rαfr(x)ψ(Rαfr(x))}q dx

]1/q

≤ C(log q)1/β

[
ψ(log q) +

{∫
B(x0,2r)

Φp(f(y)) dy

}1/p
]
.

Now we obtain (5.6) as in the first part of the proof.
Thus the required assertion follows from Lemma 2.3. �

Corollary 5.3. Let f be a nonnegative measurable function on Rn satisfying
(1.1) and ∫

Rn

f(y)p[log(e + f(y))]p−1[log(e + log(e+ f(y)))]b

×[log(e+ log(e+ (log(e+ f(y)))))]c dy <∞
for some numbers b and c. If αp = n, b < p−1, β = p/(p−1−b) and γ = c/(p−1−b),
then

lim
r→0

−
∫

B(x0,r)

{
exp(A exp(B|Rαf(x) − Rαf(x0)|β

×(log(e+ |Rαf(x) − Rα(x0)|))γ)) − eA
}
dx = 0 (5.11)

holds for Cα,Φp-quasi every x0 ∈ Rn and all A,B > 0.

In fact, let ϕ(t) = (log t)p−1(log log t)b(log log log t)c when t ≥ t0 > e and
ϕ(t) = ϕ(t0) when t < t0. If t0 is sufficiently large, then ϕ is nondecreasing.
In this case, it suffices to consider ψ(t) = {log(e+ t)}c/p and hence Ψ(δ) = Cδ−c/p

when c > 0.

Proof of Theorem B. Theorem B is nothing but Corollary 5.3 when c = 0.
�
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