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Synopsis We establish oscillation criteria for solutions of quasilinear second order

elliptic equations. We do not impose any additional conditions on the nonlinear terms

except for the continuity. In particular, we can characterize the oscillation property of

every solution for autonomous equations.

1 Introduction and main results

In asymptotic theory of differential equations it is an important problem to determine

whether solutions of equations under consideration are oscillatory or not. The aim of this

paper is to establish oscillation criteria for solutions of quasilinear elliptic equations of

the form

∆mu + a(x)f(u) = 0, (1.1)

where ∆m denotes the m−Laplace operator: ∆mu = div(|Du|m−2Du),m > 1. To begin

with we give the definition of oscillation precisely:

Definition. A continuous function defined in an exterior domain in RN , N ≥ 2,

is said to be oscillatory if there is a sequence of its zeros diverging to ∞; otherwise

nonoscillatory.

The study of oscillation theory for nonlinear elliptic equations was initiated essentially

by Noussair and Swanson [12]. They presented effective oscillation criteria for (1.1) with

m = 2 and f(u) = |u|σ−1u, σ ≥ 1, while the case m = 2 and 0 < σ < 1 was treated in

[2, 4]. The arguments in these works are chiefly based on asymptotic analysis of ordinary

differential inequalities which are satisfied by sorts of spherical means of positive solution

of (1.1). Hence it seems that such methods can not be applicable directly to (1.1) if

m 6= 2, or if f(u) is not a power-like function.
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On the other hand, without imposing any additional conditions on f(u) except for

the continuity oscillation criteria for (1.1) with m = 2 were established in [9]. Recently

in [10] oscillation criteria for (1.1) with m > 1 and f(u) = |u|σ−1u, σ > 0, which can

be regarded as generalizations of earlier results in [2, 4, 12], have been obtained. The

main idea in [10] is a combination of comparison principles with asymptotic analysis of

ordinary differential equations which are associated to (1.1) in some sense. Related results

are found in [1, 11, 13, 15, 16, 17].

Motivated by these results, here we try to extend the results for the case m = 2 in [9]

to more general case m > 1 by proceeding further in these directions. Note that some of

our results below are new even though m = 2.

Let us consider equation (1.1) under the following assumptions:

(A1) the space dimension N ≥ 2, and m > 1.

(A2) f ∈ C(R; R) is an odd function such that uf(u) > 0, u 6= 0.

(A3) a is a nonnegative continuous function defined in an exterior domain in RN .

As stated above, it should be emphasized that we do not impose any additional conditions

on f such as monotonicity conditions or asymptotic growth conditions as u → +0 or +∞.

Instead certain monotonicity conditions on a are required occasionally. Throughout the

paper by a solution of (1.1) (or the equation under consideration) is meant a function

which is defined near ∞ and satisfies (1.1) (or the equation under consideration) in the

classical sense unless otherwise stated.

To state our oscillation criteria we introduce auxiliary functions. Let a∗, a∗ be contin-

uous functions defined near +∞ such that

0 ≤ a∗(|x|) ≤ a(x) ≤ a∗(|x|) near ∞.

Our oscillation criteria are based on the following proposition of comparison type:

Proposition 1.1 If PDE (1.1) has a nonoscillatory solution u, then ODE

r1−N(rN−1|v′|m−2v′)′ + a∗(r)f(v) = 0 (1.2)

has a positive solution v satisfying

0 < v(r) ≤ min
|x|=r

|u(x)|
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for sufficiently large r.

The following, which reduces oscillation criteria for PDE (1.1) to those for ODE (1.2), is

an immediate consequence of Proposition 1.1.

Corollary 1.2 If ODE (1.2) does not have eventually positive solutions defined near +∞,

then every solution of PDE (1.1) is oscillatory

Our results are as follows.

Theorem 1.3 Let m < N and a∗ be nondecreasing near +∞. Then every solution of

(1.1) is oscillatory if
∫ ∞

rN−1a∗(r)f
(
cr−

N−m
m−1

)
dr = ∞ for all c > 0. (1.3)

Theorem 1.4 Let m = N and rσa∗(r) be nondecreasing near +∞ for some σ < m. Then

every solution of (1.1) is oscillatory if
∫ ∞

rN−1a∗(r)f(c log r)dr = ∞ for all c > 0. (1.4)

Theorem 1.5 Let m > N and rσa∗(r) be nondecreasing near +∞ for some σ < m. Then

every solution of (1.1) is oscillatory if (1.3) holds.

To see the sharpness of our oscillation criteria we give sufficient conditions for (1.1) to

have a nonoscillatory (weak) solution.

Theorem 1.6 Let m < N and rσa∗(r) be a monotone function near +∞ for some σ ∈ R.

Then (1.1) has a positive (weak) solution u satisfying

c1|x|−
N−m
m−1 ≤ u(x) ≤ c2|x|−

N−m
m−1 a.e.− x

near ∞ for some constants c1, c2 > 0 if
∫ ∞

rN−1a∗(r)f
(
cr−

N−m
m−1

)
dr < ∞ for some c > 0. (1.5)

Theorem 1.7 Let m = N and rσa∗(r) be nondecreasing near +∞ for some σ < m. Then

(1.1) has a positive (weak) solution u satisfying

c1 log |x| ≤ u(x) ≤ c2 log |x| a.e.− x

near ∞ for some constants c1, c2 > 0 if
∫ ∞

rN−1a∗(r)f(c log r)dr < ∞ for some c > 0. (1.6)
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Theorem 1.8 Let m > N and rσa∗(r) be nondecreasing near +∞ for some σ < m. Then

(1.1) has a positive (weak) solution u satisfying

c1|x|
m−N
m−1 ≤ u(x) ≤ c2|x|

m−N
m−1 a.e.− x

near ∞ for some constants c1, c2 > 0 if (1.5) hold.

Remark 1.9 When a(x) has radial symmetry, the positive weak solutions referred in

Theorems 1.6 - 1.8 can be made in such a way that they are classical radial solutions.

This fact follows from the proofs immediately.

When a(x) ≡ 1, we may take a∗(r) ≡ a∗(r) ≡ 1. Therefore for the autonomous

equation

∆mu + f(u) = 0 (1.7)

we can completely characterize oscillatory behavior of every solution via Theorems 1.3 -

1.8 as shown below:

Corollary 1.10 (i) Let m 6= N . Then every solution of (1.7) is oscillatory if and only if

∫ ∞
rN−1f

(
r−

N−m
m−1

)
dr = ∞.

(ii) Let m = N . Then every solution of (1.7) is oscillatory if and only if

∫ ∞
rN−1f(c log r)dr = ∞ for all c > 0.

Let m < N . Then Theorem 1.3 is not applicable if a∗ is not nondecreasing. However,

we expect that there are oscillation criteria for Eq (1.1) even though a∗(r) may decrease

as r → +∞. The following may be applicable in such cases:

Theorem 1.11 Let m < N and

lim inf
|x|→∞

|x|`a(x) > 0 for some ` ≤ m. (1.8)

Then every solution of (1.1) is oscillatory if

∫ ∞
rN−1−`−εf

(
r−

N−m
m−1

)
dr = ∞ for some ε > 0. (1.9)
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Example 1.12 Let m < N . Consider Eq (1.1) under the condition that

0 < lim inf
|x|→∞

|x|`a(x) ≤ lim sup
|x|→∞

|x|`a(x) < ∞ for some ` ≤ m.

We then have the following statements by Theorems 1.6 and 1.11:

(i) If ∫ ∞
rN−1−`f(r−

N−m
m−1 )dr < ∞,

then Eq (1.1) has (weak) nonoscillatory solutions.

(ii) If ∫ ∞
rN−1−`−εf(r−

N−m
m−1 )dr = ∞ for some ε > 0,

then every solution of Eq (1.1) is oscillatory.

Remark 1.13 The monotonicity of a∗ required in the assumption of Theorem 1.3 can

not be dropped. The restriction “ε > 0” in the assumption of Theorem 1.11 can not be

weakened to “ε = 0”. To see these facts consider the equation

∆mu +
λ

|x|m |u|
m−2u = 0, N > m, (1.10)

for |x| ≥ 1, where λ > 0 is a parameter. This is an analogue to Euler’s equation, which

is obtained by putting m = 2 in (1.10). It is proved by Corollary 1.2 and some results in

[6] that

(i) every solution of (1.10) is oscillatory if λ >
(

N−m
m

)m
;

(ii) there is a positive radial solution of (1.10) if 0 < λ ≤ (
N−m

m

)m
.

For (1.10), by putting a∗(r) = λr−m and f(u) = |u|m−2u, integral conditions (1.3)

and (1.9) with ε = 0 and ` = m are satisfied. But as stated above, Eq (1.10) does have

nonoscillatory solutions if λ > 0 is sufficiently small.

Remark 1.14 The restriction “` ≤ m” in the assumption of Theorem 1.11 is best possible

in some sense. In fact, the equation

∆mu +
1

|x|m+δ
f(u) = 0, |x| ≥ 1, N > m, δ > 0,

has positive radial solutions near ∞ for any f(u) ; see [10].
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The organization of the paper is as follows. In §2 we give the proof of Proposition 1.1.

To show this proposition we will need several steps. In §3 we give the proof of Theorems

1.6 - 1.8. The proof is based on the supersolution-subsolution method. Since suitable

supersolutions will be made as solutions of quasilinear ordinary differential equations

associated to PDE (1.1), our main efforts are devoted to constructing positive solutions

of such quasilinear ordinary differential equations. The authors believe that the results

in §3 are of independent interest. Finally in §4 we give the proof of oscillation criteria

Theorems 1.3 - 1.5 and 1.11.

2 Reduction to one-dimensional problems

In this section we give the proof of Proposition 1.1. Actually we will study more general

equation than (1.1) for future reference.

Let us consider the equation

div(A(|Du|)Du) + G(x, u) = 0 (2.1)

in an exterior domain Ω ⊂ RN , N ≥ 2, under the following conditions:

(B1) A ∈ C([0,∞); [0,∞)) is such that sA(s) > 0 for s > 0, sA(|s|) is of class

C1, (sA(s))′ > 0 for s > 0, and lims→∞ sA(s) = ∞ ;

(B2) G ∈ C(Ω ×R;R) is an odd function with respect to u, and there is a function

g ∈ C([r0,∞)×R;R) such that

G(x, u) ≥ g(|x|, u) > 0, |x| ≥ r0, u > 0,

where r0 > 0 is a sufficiently large number ;

(B3) g(r, u) is an odd function with respect to u, and satisfies g(r, u) > 0 for r ≥
r0, u > 0.

For simplicity we often denote the operator div(A(|Du|)Du) by Qu; and hence Eq

(2.1) is rewritten simply as

Qu + G(x, u) = 0.

Eq (1.1), which we are interested in, surely satisfies (B1)-(B3) with

A(s) = |s|m−2,

G(x, u) = a(x)f(u); and g(r, u) = a∗(r)f(u).
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It should be noted that for radial functions v(r), r = |x|,

Qv(r) = r1−N(rN−1A(|v′|)v′)′

= (A(|v′|)v′)′ + N − 1

r
A(|v′|)v′. (2.2)

In what follows we occasionally regard Q as an ordinary differential operator given by

(2.2) when Q acts on radial functions.

Theorem 2.1 If PDE (2.1) has a nonoscillatory solution u, then the quasilinear ordinary

differential equation

Qv + g(r, v) = 0 (2.3)

has a positive solution v(r) satisfying

0 < v(r) ≤ min
|x|=r

|u(x)| (2.4)

for sufficiently large r.

The following is an immediate consequence of Theorem 2.1:

Theorem 2.2 If ODE (2.3) has no eventually positive solutions, then every solution of

PDE (2.1) is oscillatory.

Proposition 1.1 in Section 1 is one of special case of Theorem 2.1.

To prove Theorem 2.1 we need several preparatory considerations.

Lemma 2.3 Let B ⊂⊂ Ω be a bounded domain with smooth boundary ∂B, and w1 and

w2 be positive functions on B̄ satisfying




Qw1 − Cwρ
1 ≥ Qw2 − Cwρ

2 in B

w2 ≥ w1 > 0 on ∂B,

where C ≥ 0 and ρ > 0 are given constants. Then w2 ≥ w1 in B.

Proof. Put

η(s) =





s2, s ≥ 0;

0, s ≤ 0.

Since Qw1 −Qw2 ≥ C(wρ
1 − wρ

2) in B̄, we have

(Qw1 −Qw2)η(w1 − w2) ≥ C(wρ
1 − wρ

2)η(w1 − w2) ≥ 0 in B̄.

Therefore the proof is essentially the same as that of Proposition 1.1 in [10].
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Lemma 2.4 (a supersolution-subsolution method of quasilinear ODEs) Let h ∈ C([R, b]×
R;R), 0 < R < b, be a locally Lipschitz continuous function. Suppose that v̄ and v are,

respectively, a supersolution and a subsolution for the two-point BVP




Qv = h(r, v) in [R, b];

v(R) = v0, v(b) = v1

(2.5)

satisfying v̄ ≤ v on [R, b], where v0 and v1 are given constants. Then there is a solution

v of BVP (2.5) satisfying v ≤ v ≤ v̄ on [R, b].

Proof. Put

h̃(r, v) =





h(r, v̄) for v ≥ v̄;

h(r, v) for v ≤ v ≤ v̄;

h(r, v) for v ≤ v.

Since h is bounded on [R, b]×R, as in the proof of Lemma 5.3 in [8] we can find a solution

v of the BVP 



Qv = h̃(r, v) on [R, b];

v(R) = v0, v(b) = v1.
(2.6)

It suffices to show that v ≤ v ≤ v̄ on [R, b].

To this end suppose the contrary that v > v̄ at some point in (R, b). Then there is a

subinterval (c, d) ⊂ (R, b) such that




v > v̄ in (c, d);

v = v̄ at r = c, d;

v′(c) ≥ v̄′(c), v′(d) ≤ v̄′(d).

(2.7)

Put sA(|s|) = Φ(s). Integrating (2.5), we have

dN−1{Φ(v′(d))− Φ(v̄′(d))} ≥cN−1{Φ(v′(c))− Φ(v̄′(d))}

+

∫ d

c

sN−1{h̃(s, v(s))− h(s, v̄(s))}ds.

By (2.7), the left-hand side of the above is nonpositive, while the right-hand side nonneg-

ative. Therefore it follows that v′(c) = v̄′(c) and v′(d) = v̄′(d). We recall that

(rN−1Φ(v′(r)))′ = rN−1h(r, v̄(r)) ≥ (rN−1Φ(v̄′(r)))′, c ≤ r ≤ d.

Integrating this inequality on [c, r], c ≤ r ≤ d, we have rN−1Φ(v′(r)) ≥ rN−1Φ(v̄′(r)) on

[c, d]; that is, v′(r) ≥ v̄′(r) on [c, d]. Hence the function v − v̄ is nondecreasing on [c, d].
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Since v − v̄ = 0 at r = c, d, we find that v ≡ v̄ on [c, d]. This, however, contradicts

property (2.7). Hence we get v ≤ v̄ on [R, b].

Similarly we can prove v ≥ v on [R, b]. The proof is complete.

Lemma 2.5 Let h ∈ C((0,∞); (0,∞)), k ∈ C([R, b];R), and v1 and v2 be given positive

constants. Then the two-point BVP




Qv − h(v) + k(r) = 0 on [R, b];

v(R) = v1, v(b) = v2

(2.8)

has a positive supersolution.

Proof. Since lims→∞ sA(s) = ∞, there is a sufficiently large number ` > 0 satisfying

A(`e`r) · `e`r ≥ rk(r)

N − 1
on [R, b].

Note that we obtain obviously

(A(`e`r) · `e`r)′ +
N − 1

r
A(`e`r) · `e`r ≥ k(r) on [R, b].

Having chosen such an `, we next choose a constant C = C(`) > 0 so that




C − e`r > 0 on [R, b];

C − e`R > v1, C − e`b > v2.

Then the function v̄(r) = C − e`r(> 0) is a supersolution of BVP (2.8). In fact, we have

Qv̄(r) ≤ −k(r) ≤ −k(r) + h(v̄(r)) on [R, b].

This completes the proof.

For a positive solution u(x) of (2.1) on the annulus R ≤ |x| ≤ b we put

û(r) = min
|x|=r

u(x).

This notation will be employed in the sequel.

Lemma 2.6 Suppose that there is a positive solution u(x) of (2.1) on an annulus R ≤
|x| ≤ b. Then the two-point BVP





Qv + g(r, v) = 0 in [R, b];

v = û at r = R, b,
(2.9)

has a positive solution v(r) on [R, b] satisfying

0 < v(r) ≤ û(r), R ≤ r ≤ b. (2.10)

9



Proof. Put

u∗ = min
R≤|x|≤b

u(x), u∗ = max
R≤|x|≤b

u(x)

and define the set B by

B = {(r, u) : R ≤ r ≤ b, u∗ ≤ v ≤ u∗}.

Step 1. We firstly prove this lemma under the additional condition that g(r, u) is Lipschitz

continuous on B. Let C > 0 be a sufficiently large number such that the function

g(r, u) + Cu is nondecreasing with respect to u on B. Consider the BVP




Qw − Cw + {g(r, û(r)) + Cû(r)} = 0 on [R, b];

w = û at r = R, b.
(2.11)

The constant function w ≡ u∗ is a subsolution of (2.11). On the other hand Lemma 2.5

implies that there is a positive supersolution w̄ of (2.11). Since the supersolution referred

in Lemma 2.5 can be made as large as we desire, we may assume that w ≤ w̄ on [R, b].

Hence by Lemma 2.4 BVP (2.11) has a solution w squeezed by w and w̄. Observing that

Qw(|x|)− Cw(|x|) = −{g(|x|, û(|x|)) + Cû(|x|)}
≥ −{G(x, u(x)) + Cu(x)}
≥ Qu(x)− Cu(x), R ≤ |x| ≤ b,

and u(x) ≥ û(|x|) = w(|x|) on |x| = R, b, we have via Lemma 2.3 u(x) ≥ w(|x|) on

R ≤ |x| ≤ b. This implies that

u∗ ≤ w(r) ≤ û(r), R ≤ r ≤ b.

Therefore we find that

Qw(r) + g(r, w(r)) = {g(r, w(r)) + Cw(r)} − {g(r, û(r)) + Cû(r)} ≤ 0

for r ∈ [R, b], which implies that w(r) is a supersolution of BVP (2.9). Since w(r) ≥ u∗,

and the constant function u∗ is a subsolution of (2.9), we obtain a solution v of (2.9)

satisfying

u∗ ≤ v(r) ≤ w(r) ≤ û(r), R ≤ r ≤ b.

Step 2. Next we consider the general case. Let {gn(r, v)} be a sequence of C∞-functions

on B such that

g(r, v) ≥ gn(r, v) > 0 for n ∈ N on B;
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and

lim
n→∞

gn(r, v) = g(r, v) uniformly on B.

The existence of such a sequence can be proved, for example, by the approximation

theorem of Weierstrass.

By Step 1 we can construct a sequence {vn} of positive functions on [R, b] such that

Qvn + gn(r, vn) = 0, R ≤ r ≤ b;

vn = û at r = R, b;

u∗ ≤ vn(r) ≤ û(r), R ≤ r ≤ b.

Therefore {vn} is uniformly bounded on [R, b]. Note that for each n ∈ N the formula

v′n(r) = Φ−1

(
cnr

1−N −
∫ r

R

(s

r

)N−1

gn(s, vn(s))ds

)
, R ≤ r ≤ b,

holds, where cn is the constant satisfying

∫ b

R

Φ−1

(
cns

1−N −
∫ s

R

(
t

s

)N−1

gn(t, vn(t))dt

)
ds = û(b)− û(R).

This shows that {cn} is bounded, and that {v′n} is uniformly bounded on [R, b]. From the

Ascoli-Arzelà theorem it follows that there is a subsequence {vnk
} ⊂ {vn} converging to

a positive continuous function v uniformly on [R, b]. We may assume that limnk→∞ cnk
≡

c ∈ R. Letting nk →∞ in the equality

vnk
(r) = û(R) +

∫ r

R

Φ−1

(
cnk

s1−N −
∫ s

R

(
t

s

)N−1

gnk
(t, vnk

(t))dt

)
ds, R ≤ r ≤ b,

we obtain

v(r) = û(R) +

∫ r

R

Φ−1

(
cs1−N −

∫ s

R

(
t

s

)N−1

g(t, v(t))dt

)
ds, R ≤ r ≤ b.

It is easily seen that v is a positive solution of BVP (2.9) satisfying (2.10). This completes

the proof of Lemma 2.6.

Lemma 2.7 Let R < R1 < R2. Then we can find a constant C = C(R,R1, R2) > 0 such

that

v(r) ≥ C, R ≤ r ≤ R1, (2.12)

for any positive function v satisfying

Qv(r) ≤ 0, R ≤ r ≤ R2;

v(R) = û(R).
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Proof. Let c̃ > 0 be a unique constant satisfying

û(R) =

∫ R2

R

Φ−1(c̃s1−N)ds.

Put

w(r) = û(R)−
∫ r

R

Φ−1(c̃s1−N)ds.

Then we have 



Qw(r) = 0, R ≤ r ≤ R2;

w(R) = û(R), w(R2) = 0;

w(r) > 0 on [R,R2).

By Lemma 2.3 v(r) ≥ w(r) on [R,R2]. Therefore we obviously obtain (2.12) by putting

C = minR≤r≤R1 w(r) > 0. This completes the proof.

Proof of Theorem 2.1. Let u be a nonoscillatory solution of Eq (2.1). We may assume

that u(x) > 0 for |x| ≥ R, R being sufficiently large. Let {bn}∞n=1 be a sequence satisfying

R < b1 < b2 < · · · < bn < · · · ; and lim
n→∞

bn = +∞.

By Lemma 2.6 for every n ∈ N we can find a function vn on [R, bn] satisfying

Qvn + g(r, vn) = 0, R ≤ r ≤ bn;

vn(R) = û(R), vn(bn) = û(bn);

0 < vn(r) ≤ û(r), R ≤ r ≤ bn. (2.13)

We will show that {vn}∞n=1 contains a subsequence tending to a desired solution of (2.3)

on every finite subinterval of [R,∞).

Let i ∈ N be fixed, and consider the sequence {vn}∞n=i+1 on [R, bi]. By Lemma 2.7 and

(2.13) we can find constants C1(i) and C2(i) not depending on n ≥ i + 1 satisfying

0 < C1(i) ≤ vn(r) ≤ C2(i) on [R, bi] for n ≥ i + 1. (2.14)

We observe that, for n ≥ i + 1, vn satisfies the formula

v′n(r) = Φ−1

(
c(n, i)r1−N −

∫ r

R

(s

r

)N−1

g(s, vn(s))ds

)
, R ≤ r ≤ bi.

Here the constant c(n, i) ∈ R is such that

∫ bi

R

Φ−1

(
c(n, i)s1−N −

∫ s

R

(
t

s

)N−1

g(t, vn(t))dt

)
ds = û(bi)− û(R).
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Since {g(t, vn(t))}∞n=i+1 is uniformly bounded on [R, bi] by (2.14), we obtain |c(n, i)| ≤
C3(i) for n ≥ i + 1 with some constant C3(i) > 0. Accordingly

|v′n(r)| ≤ C4(i) on [R, bi] for n ≥ i + 1

for some constant C4(i) > 0. From the above argument, Ascoli-Arzela’s theorem, and the

diagonal argument we can find a subsequence {vµ} ⊂ {vn} and a continuous function v∞

on [R,∞) such that {vµ} converges to v∞ on each finite interval in [R,∞). Note that, by

(2.13) and (2.14), 0 < v∞(r) ≤ û(r) on [R,∞).

Let R ≤ r ≤ bi. We know that for all sufficiently large µ

vµ(r) = û(R) +

∫ r

R

Φ−1

(
c(µ, i)s1−N −

∫ s

R

(
t

s

)N−1

f(t, vµ(t))dt

)
ds.

We may assume that limµ→∞ c(µ, i) = c(∞, i), c(∞, i) being some constant. Let µ →∞
in the above formula. We then obtain on [R, bi]

v∞(r) = û(R) +

∫ r

R

Φ−1

(
c(∞, i)s1−N −

∫ s

R

(
t

s

)N−1

f(t, v∞(t))dt

)
ds.

This identity shows that v∞(r) is a positive solution of Eq (2.3) on [R, bi]. Since i ∈ N

is arbitrary, we know that v∞(r) is a desired solution of Eq (2.3) satisfying (2.4). This

completes the proof.

3 Existence of nonoscillatory solutions

The proof of existence theorems of nonoscillatory solutions is based on the supersolution-

subsolution method which is formulated, for example, in [5].

To explain briefly how we adapt this method, let m < N . The function v(x) =

c1|x|−(N−m)/(m−1) is a subsolution of (1.1) for any constant c1 > 0 because ∆mv(x) ≡ 0.

Next let v̄(r) be a positive solution of equation

r1−N(rN−1|v′|m−2v′)′ + a∗(r)f(v) = 0. (3.1)

Obviously we know that v̄(|x|) is a supersolution of (1.1). Hence, if we can construct a

solution v̄ of (3.1) in such a way that v̄ ∼ c2r
−(N−m)/(m−1) as r → ∞ for some constant

c2 > 0, we can conclude that Eq (1.1) possesses a positive (weak) solution u satisfying

c3|x|−
N−m
m−1 ≤ u(x) ≤ c4|x|−

N−m
m−1 a.e.− x near ∞
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for some constants c3, c4 > 0. This argument is essentially the proof of Theorem 1.6.

Therefore in this section most of our effort is devoted to finding suitable positive solutions

of (3.1).

As in Section 2 we shall give more general results than are applicable to prove the

existence theorems. Let us consider the ODE

(p(r)|v′|α−1v′)′ + q(r)h(v) = 0, (3.2)

where we assume that

(C1) α > 0 is a constant ;

(C2) p, q ∈ C([R0,∞); (0,∞)), and p satisfies

∫ ∞
p(s)−1/αds < ∞;

(C3) h ∈ C((0,∞); (0,∞)).

Since our purpose is to find appropriate solutions of (3.1), we do not impose any other

conditions on h(r) except for its continuity. Sometimes we must solve more restrictive

equations than (3.2):

(rβ|v′|α−1v′)′ + q(r)h(v) = 0, (3.3)

where β > α is a constant. Notice that, (3.2) and (3.3) are essentially the same as (3.1)

with m < N .

Under assumption (C2), we can define the function π(r) by

π(r) =

∫ ∞

r

p(s)−
1
α ds.

For (3.3), π(r) is given by π(r) = 1
β−α

r−(β−α)/α.

Proposition 3.1 Suppose that p(r)1/αq(r) is nondecreasing near +∞. Suppose in addi-

tion that there exists a constant c > 0 such that

∫ ∞
q(s)h(cπ(s))ds < ∞. (3.4)

Then equation (3.2) has a positive solution v near +∞ satisfying

lim
r→∞

v(r)

π(r)
= const > 0.
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Proof. We first observe that v is a positive solution of (3.2) if v satisfies

v(r) =

∫ ∞

r

p(s)−
1
α

(
cα −

∫ ∞

s

q(t)h(v(t))dt

) 1
α

ds. (3.5)

We note that by the change of variable cπ(s) = τ the condition (3.4) is equivalent to

∫

0

p
(
π−1

(τ

c

)) 1
α

q
(
π−1

(τ

c

))
h(τ)dτ < ∞. (3.6)

Let d ∈ (0, c) be fixed. Then, by (3.6), it is possible to choose b ∈ [R0,∞) so that

1

d

∫ cπ(b)

0

p
(
π−1

(τ

c

)) 1
α

q
(
π−1

(τ

c

))
h(τ)dτ < cα − dα, (3.7)

where π−1 is the inverse function of π. Let C1[b,∞) be the Fréchet space with the

topology of uniform convergence of functions and their first derivatives on every compact

subinterval of [b,∞), and X be the set of all function v ∈ C1[b,∞) satisfying

dπ(r) ≤ v(r) ≤ cπ(r), r ≥ b,

and

dp(r)−
1
α ≤ −v′(r) ≤ cp(r)−

1
α , r ≥ b. (3.8)

Each element v ∈ X has the inverse function v−1(τ) on (0, v(b)], and it satisfies

v−1(τ) ≤ π−1
(τ

c

)
, 0 < τ ≤ v(b), (3.9)

and

π−1
(τ

d

)
≤ v−1(τ), 0 < τ ≤ dπ(b).

Consider the mapping F : X → C1[b,∞) defined by

Fv(r) =

∫ ∞

r

p(s)−
1
α

(
cα −

∫ ∞

s

q(t)h(v(t))dt

) 1
α

ds, r ≥ b.

We claim that F has a fixed element in X via the Schauder-Tychonoff fixed point theorem

[14, Theorems 2.3.8 and 4.5.1]. To this end, we show that F is a continuous mapping

from X into itself such that F(X) is relatively compact.

(i) F is well-defined on X and F maps X into itself. Let v ∈ X. Then, by the change

of variable τ = v(t), we have

∫ ∞

s

q(t)h(v(t))dt =

∫ v(s)

0

q(v−1(τ))h(τ)

−v′(v−1(τ))
dτ, s ≥ b.
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From (3.8), we have

1

−v′(v−1(τ))
≤ p(v−1(τ))

1
α

d
.

Using this inequality, (3.7), (3.9) and the nondecreasing property of p1/αq, we get

∫ ∞

s

q(t)h(v(t))dt ≤1

d

∫ v(b)

0

p(v−1(τ))
1
α q(v−1(τ))h(τ)dτ

≤1

d

∫ cπ(b)

0

p
(
π−1

(τ

c

)) 1
α

q
(
π−1

(τ

c

))
h(τ)dτ

<cα − dα.

Hence we see that

d <

(
cα −

∫ ∞

s

q(t)h(v(t))dt

) 1
α

≤ c.

Therefore, we can easily see that F is well-defined on X and that F(X) ⊂ X.

(ii) F is continuous. Let {vn} ⊂ X be a sequence converging to v ∈ X in the topology

of C1[b,∞). Put

gn(r) = p(r)−1

(
cα −

∫ ∞

r

q(s)h(vn(s))ds

)
,

and

g(r) = p(r)−1

(
cα −

∫ ∞

r

q(s)h(v(s))ds

)
. (3.10)

Then we obtain for r ≥ b

|gn(r)− g(r)| ≤ p(r)−1

∫ ∞

r

q(s)|h(vn(s))− h(v(s))|ds,

|Fvn(r)−Fv(r)| ≤
∫ ∞

r

|gn(s)
1
α − g(s)

1
α |ds, (3.11)

|(Fvn)′(r)− (Fv)′(r)| ≤ |gn(r)
1
α − g(r)

1
α |. (3.12)

Let ε > 0 be an arbitrary number. Then, by using similar argument as in (i), it is

possible to choose b̃ = b̃(ε) ≥ b so that

∫ ∞

b̃

q(s)h(vn(s))ds < ε and

∫ ∞

b̃

q(s)h(v(s))ds < ε.

Therefore, we see that

∫ ∞

b

q(s)|h(vn(s))− h(v(s))|ds ≤ 2ε +

∫ b̃

b

q(s)|h(vn(s))− h(v(s))|ds.

This implies that {gn} converges to g uniformly on every compact subinterval of [b,∞),

and hence {g1/α
n } converges to g1/α uniformly on every compact subinterval of [b,∞).
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From this fact and (3.12), we conclude that {(Fvn)′(r)} converges to (Fv)′(r) uniformly

on every compact subinterval of [b,∞). Since |gn(s)1/α − g(s)1/α| ≤ 2cp(s)−1/α and (C2)

holds, the Lebesgue dominated convergence theorem implies that {Fvn(r)} converges to

Fv(r) uniformly on [b,∞). This shows that {Fvn} converges to Fv in the topology of

C1[b,∞), proving the continuity of the mapping F .

(iii) F(X) is relatively compact. To see this, it suffices to prove the equicontinuity of

the set {(Fv)′; v ∈ X} on every compact subinterval of [b,∞).

Let R > b be fixed and let b ≤ r1 < r2 ≤ R. Then

(Fv)′(r1)− (Fv)′(r2) = (g(r2))
1
α − (g(r1))

1
α ,

where g is defined by (3.10). Using the inequalities

|(g(r2))
1
α − (g(r1))

1
α | ≤ |g(r2)− g(r1)| 1α for α ≥ 1 ;

and

|(g(r2))
1
α − (g(r1))

1
α | ≤ 1

α
|g(ξ)| 1−α

α |g(r2)− g(r1)|

≤ c1−α

α
p(ξ)−

1−α
α |g(r2)− g(r1)| for 0 < α < 1,

where ξ ∈ [r1, r2], and

|g(r2)− g(r1)| =
∣∣∣∣

1

p(r2)

(
cα −

∫ ∞

r2

q(s)h(v(s))ds

)
− 1

p(r1)

(
cα −

∫ ∞

r2

q(s)h(v(s))ds

)

+
1

p(r1)

(
cα −

∫ ∞

r2

q(s)h(v(s))ds

)
− 1

p(r1)

(
cα −

∫ ∞

r1

q(s)h(v(s))ds

)∣∣∣∣

=

∣∣∣∣
(

1

p(r2)
− 1

p(r1)

)(
cα −

∫ ∞

r2

q(s)h(v(s))ds

)

+
1

p(r1)

(∫ ∞

r1

−
∫ ∞

r2

)
q(s)h(v(s))ds

∣∣∣∣

≤
∣∣∣∣

1

p(r2)
− 1

p(r1)

∣∣∣∣
(

cα −
∫ ∞

r2

q(s)h(v(s))ds

)
+

1

p(r1)

∫ r2

r1

q(s)h(v(s))ds

≤ cα

∣∣∣∣
1

p(r2)
− 1

p(r1)

∣∣∣∣ +
1

p(r1)

∫ r2

r1

q(s)h(v(s))ds,

≤ cα

∣∣∣∣
1

p(r2)
− 1

p(r1)

∣∣∣∣ +
1

p(r1)

(∫ r2

r1

q(s)ds

)
max

[dπ(R),cπ(b)]
h(ξ),

we conclude that F(X) is equicontinuous on [b, R]. It follows that F(X) is relatively

compact in the C1-topology.
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Thus, by the Schauder-Tychonoff fixed point theorem, there exists an element v ∈ X

such that v = Fv; i.e,

v(r) =

∫ ∞

r

p(s)−
1
α

(
cα −

∫ ∞

s

q(t)h(v(t))dt

) 1
α

ds, r ≥ b.

Differentiating this equation, we see that v is a positive solution of (3.2) on [b,∞). We

also see that, by L’Hospital’s rule,

lim
r→∞

v(r)

π(r)
= lim

r→∞
v′(r)
π′(r)

= lim
r→∞

(
cα −

∫ ∞

r

q(s)h(v(s))ds

) 1
α

= c.

The proof is complete.

Proposition 3.2 Suppose that rσq(r) is a monotone function near +∞ for some σ ∈ R.

Suppose moreover that there exists a constant c > 0 such that

∫ ∞
q(s)h(cs−

β−α
α )ds < ∞. (3.13)

Then equation (3.3) has a positive solution v near +∞ satisfying

lim
r→∞

r
β−α

α v(r) = const > 0.

Proof. We prove only the case that the function rσq(r) is nondecreasing, since the other

case can be treated similarly. As before, it suffices to solve the following integral equation:

v(r) =
β − α

α

∫ ∞

r

s−
β
α

(
cα −

(
α

β − α

)α ∫ ∞

s

q(t)h(v(t))dt

) 1
α

ds.

We first notice that by the change of variable cs−(β−α)/α = τ (3.13) is equivalent to

∫

0

τ−
β

β−α q

(( c

τ

) α
β−α

)
h(τ)dτ < ∞.

Let d ∈ (0, c) be fixed. Then it is possible to choose b ∈ [R0,∞) so that

αα+1d
β−ασ
β−α c

ασ
β−α

(β − α)α+1d

∫ cK(b)

0

τ−
α

β−α q

(( c

τ

) α
β−α

)
h(τ)dt < cα − dα,

where K(b) = b(α−β)/α. We may assume that σ > β
α
, since rσ̃q(r) is nondecreasing for any

σ̃ > σ. Let X be the set of all function v ∈ C1[b,∞) satisfying

dr
α−β

α ≤ v(r) ≤ cr
α−β

α , r ≥ b,
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and

−β − α

α
cr−

β
α ≤ v′(r) ≤ −β − α

α
dr−

β
α , r ≥ b. (3.14)

For v ∈ X we have
(

d

τ

) α
β−α

≤ v−1(τ) ≤
( c

τ

) α
β−α

, 0 < τ ≤ v(b). (3.15)

Consider the mapping F : X → C1[b,∞) defined by

Fv(r) =
β − α

α

∫ ∞

r

s−
β
α

(
cα −

(
α

β − α

)α ∫ ∞

s

q(t)h(v(t))dt

) 1
α

ds, r ≥ b.

We claim that F has a fixed element in X. As before we show that F is a continuous

mapping from X into itself such that F(X) is relatively compact.

Let v ∈ X. Then, by the change of variable τ = v(r), we have

∫ ∞

b

q(t)h(v(t))dt = −
∫ v(b)

0

q(v−1(τ))h(τ)

v′(v−1(τ))
dτ.

From (3.14), (3.15) and nondecreasing property of rσq(r), we get

∫ ∞

b

q(t)h(v(t))dt ≤ α

(β − α)d

∫ v(b)

0

{v−1(τ)} β
α q(v−1(τ))h(τ)dτ

=
α

(β − α)d

∫ v(b)

0

{v−1(τ)} β
α
−σ{v−1(τ)}σq(v−1(τ))h(τ)dτ

≤ α

(β − α)d

∫ v(b)

0

{v−1(τ)} β
α
−σ

( c

τ

) ασ
β−α

q

(( c

τ

) α
β−α

)
h(τ)dτ

≤ α

(β − α)d

∫ v(b)

0

(
d

τ

)β−ασ
β−α ( c

τ

) ασ
β−α

q

(( c

τ

) α
β−α

)
h(τ)dτ

≤ α

(β − α)d
d

β−ασ
β−α c

ασ
β−α

∫ cK(b)

0

τ−
β

β−α q

(( c

τ

) α
β−α

)
h(τ)dτ

<

(
β − α

α

)α

(cα − dα).

Using this inequality, we can easily see that F is well-defined on X and that F(X) ⊂ X.

As in the proof of Proposition 3.1, we can prove that F is continuous and that F(X) is

relatively compact. Therefore, we find that there exists a v ∈ X such that v = Fv by the

Schauder-Tychonoff fixed point theorem. It is verified that this fixed point v is a desired

positive solution of (3.3). This completes the proof.
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We are now in a position to state existence theorems of positive solutions to equation

(3.1) which are supersolutions of PDE (1.1):

Theorem 3.3 Let m < N and rσa∗(r) be a monotone function near +∞ for some σ ∈
R. Suppose in addition that (1.5) holds. Then equation (3.1) has a positive solution v

satisfying

lim
r→∞

r
N−m
m−1 v(r) = const > 0.

Theorem 3.4 Let m = N and rσa∗(r) be nondecreasing near +∞ for some σ ∈ R. Sup-

pose in addition that (1.6) holds. Then equation (3.1) has a positive solution v satisfying

lim
r→∞

v(r)

log r
= const > 0.

Theorem 3.5 Let m > N and rσa∗(r) be nondecreasing near +∞ for some σ ∈ R. Sup-

pose in addition that (1.5) holds. Then equation (3.1) has a positive solution v satisfying

lim
r→∞

v(r)

r
m−N
m−1

= const > 0.

Theorem 3.3 is a direct consequence of Proposition 3.2. To prove Theorems 3.4 and

3.5 we put t = r(m−N)/(m−1)(m > N), and t = log r(m = N), respectively. Then equation

(3.1) is transformed into

(|v̇|m−2v̇)̇ + ã(t)f(v) = 0, (3.16)

where ˙= d/dt and

ã(t) =





(
m− 1

m−N

)m

t
m(N−1)

m−N a∗(t
m−1
m−N ), m > N,

eNta∗(et), m = N.

Ordinary differential equations of this type have been treated fully in [3]. In particular,

we can prove Theorems 3.4 and 3.5 by applying [3, Theorem 2.1].

The essence of the proof of Theorem 1.6 has been given in the introductory part of this

section. Hence we leave it to the reader. Theorems 1.7 and 1.8 can be proved similarly.

4 Proof of Oscillation Theorems

By Corollary 1.2, to prove oscillation theorems of Eq (1.1) it suffices to show the nonexis-

tence of eventually positive solutions of ODE (1.2) under the conditions indicated in each

theorems.

To prove Theorem 1.3, as well as Theorem 1.11, we need the following lemmas:
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Lemma 4.1 Let m < N and v(r) be a positive function satisfying (rN−1|v′|m−2v′)′ < 0

for r ≥ r0 > 0. Then we have

(i) v′ is of constant sign near +∞ ;

(ii) v = O(1) as r →∞;

(iii) v(r) >
m− 1

N −m
r(−v′(r)) near +∞; (4.1)

(iv) lim inf
r→∞

r
N−m
m−1 v(r) > 0. (4.2)

Proof. (i) This is easily verified because rN−1|v′|m−2v′ is a decreasing function on [r0,∞).

(ii) We observe that

rN−1|v′(r)|m−2v′(r) < c0 ≡ rN−1
0 |v′(r0)|m−2v′(r0), r ≥ r0.

Therefore we have v′(r) ≤ d0r
−(N−1)/(m−1), r ≥ r0, where d0 = |c0|

1
m−1

−1c0. Since (N −
1)/(m− 1) > 1, an integration of this inequality yields

v(r) ≤ v(r0) + |d0|
∫ ∞

r0

s−
N−1
m−1 ds ≡ const ∈ R.

(iii) Obviously we may assume that v′ < 0, r ≥ r0. Let s ≥ r ≥ r0. Since

rN−1(−v′)m−1 is an increasing function, we have

sN−1(−v′(s))m−1 ≥ rN−1(−v′(r))m−1,

that is

−v′(r) ≥ r
N−1
m−1 (−v′(r))s−

N−1
m−1 .

Integrating the both sides with respect to s from r to +∞, we obtain

−v(+∞) + v(r) ≥ r
N−1
m−1 (−v′(r))

∫ ∞

r

s−
N−1
m−1 ds.

We can immediately get (4.1) by this formula.

(iv) Rewrite (4.1) in the form

−v′(r)
v(r)

≤ N −m

m− 1

1

r
.

An integration of this inequality gives (4.2).

The proof of Lemma 4.1 is finished.
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Proof of Theorem 1.3. We will show that ODE (1.2) does not have eventually positive

solutions. To this end suppose the contrary that (1.2) has an eventually positive solution

v(r). By (i) and (ii) of Lemma 4.1 we have the following three possibilities:





Case (a) : v′ > 0 near +∞ ;

Case (b) : v′ < 0 near +∞ and v(+∞) > 0 ;

Case (c) : v′ < 0 near +∞ and v(+∞) = 0 .

(4.3)

Suppose firstly that Case (a) occurs. By (ii) of Lemma 4.1 we know that the limit

limr→∞ v(r) = c0 exists as a finite positive number. An integration of Eq (1.2) gives

rN−1(v′(r))m−1 +

∫ r

r0

sN−1a∗(s)f(v(s))ds = c1, r ≥ r0,

where c1 ∈ R is a constant, and r0 > 0 is a sufficiently large number satisfying v′(r) > 0

on [r0,∞). We may assume that a∗ is nondecreasing on [r0,∞). Accordingly we have
∫∞

r0
sN−1a∗(s)f(v(s))ds < ∞. Since a∗ is nondecreasing, and f(v(s)) is bounded away

from zero, this implies that
∫∞

r0
sN−1ds < ∞, an obvious contradiction. Hence Case (a)

never occurs.

Secondly suppose that Case (b) occurs. We may assume that v′ < 0 on [r0,∞).

Integrating twice Eq (1.2), we obtain

−v(r) + v(r0) =

∫ r

r0

s−
N−1
m−1

(
c0 +

∫ s

r0

tN−1a∗(t)f(v(t))dt

) 1
m−1

ds, r ≥ r0,

where c0 = −r0|v′(r0)|m−1 < 0. Then as in Case (a) we have a contradiction:

∫ ∞

r0

s−
N−1
m−1

(∫ s

r0

tN−1dt

) 1
m−1

ds < ∞.

Suppose finally that Case (c) occurs. Let v(r) > 0 and v′(r) < 0 on [r0,∞). We find

by (iv) of Lemma 4.1 that

v(r) ≥ c0r
−N−1

m−1 , r ≥ r0 (4.4)

for some c0 > 0. Motivated by [7], we put

w(r) ≡
(

r
−v′(r)
v(r)

)m−1

, r ≥ r0. (4.5)

A simple computation shows that w satisfies

rw′ = (m− 1)w
m

m−1 − (N −m)w +
rma∗(r)f(v(r))

v(r)m−1
, r ≥ r0. (4.6)
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Moreover, by (iii) of Lemma 4.1, we have

0 < w(r) <

(
N −m

m− 1

)m−1

, r ≥ r0. (4.7)

Below we will show ∫ ∞
rN−1a∗(r)f(c0r

m−N
m−1 )dr < ∞, (4.8)

which contradicts our assumption (1.3). Actually we will show the property

∫

0

z
m−mN
N−m a∗

((
z

c0

) m−1
m−N

)
f(z)dz < ∞, (4.9)

which is equivalent to (4.8). By the change of variable z = v(r), (4.9) can be rewritten as

∫ ∞
v(r)

m−mN
N−m a∗

((
v(r)

c0

) m−1
m−N

)
f(v(r))

v(r)

r
w(r)

1
m−1 dr < ∞,

where w(r) is given by (4.5). From (4.4) and the increasing nature of a∗, it suffices to

show that ∫ ∞
v(r)

N−mN
N−m a∗(r)f(v(r))

w(r)
1

m−1

r
dr < ∞. (4.10)

Since (4.6) implies that

rm−1a∗(r)f(v(r))

v(r)m−1
= w′ +

(N −m)w − (m− 1)w
m

m−1

r
,

and w = O(1), we have

v(r)
N−mN
N−m a∗(r)f(v(r))

w(r)
1

m−1

r

=
rm−1a∗(r)f(v(r))

v(r)m−1
· v(r)

m−m2

N−m · w(r)

rm

≤ C1

{
w′ +

(N −m)w − (m− 1)w
m

m−1

r

}
v(r)

m−m2

N−m r−m, r ≥ r0

for some constant C1 > 0. On the other hand an integration of the formula

v′(r)
v(r)

= −w
1

m−1

r

gives

log
v(r)

v(r0)
= −

∫ r

r0

w
1

m−1

s
ds,

or equivalently

v(r) = v(r0) exp

(
−

∫ r

r0

w
1

m−1

s
ds

)
, r ≥ r0.
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It follows therefore that for some constant C2 > 0

v(r)
m−m2

N−m r−m = C2 exp

(
−m−m2

N −m

∫ r

r0

w
1

m−1

s
ds

)
exp

(
−

∫ r

r0

m

s
ds

)

= C2 exp

(
− m

N −m

∫ r

r0

N −m− (m− 1)w
1

m−1

s
ds

)
, r ≥ r0.

Hence the integrand of (4.10) is estimated as follows:

v(r)
N−mN
N−m a∗(r)f(v(r))

w(r)
1

m−1

r

≤C3

{
w′(r) +

(N −m)w(r)− (m− 1)w(r)
m

m−1

r

}

× exp

(
− m

N −m

∫ r

r0

N −m− (m− 1)w(s)
1

m−1

s
ds

)
, r ≥ r0, (4.11)

where C3 > 0 is a constant. Let C̃ > 0 be a constant satisfying

w(r) <
m

N
C̃, r ≥ r0. (4.12)

Then we can obtain
{

w′(r) +
(N −m)w(r)− (m− 1)w(r)

m
m−1

r

}
exp

(
− m

N −m

∫ r

r0

N −m− (m− 1)w(s)
1

m−1

s
ds

)

≤ d

dr

[
{w(r)− C̃} exp

(
− m

N −m

∫ r

r0

N −m− (m− 1)w(s)
1

m−1

s
ds

)]
, r ≥ r0. (4.13)

In fact, by computing the right-hand side of (4.13), we find that (4.13) holds if and only

if

w(r) ≤ − m

N −m
{w(r)− C̃}, r ≥ r0,

which is equivalent to (4.12) by (4.7). Finally we integrate both sides of (4.11) and notice
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(4.13) to obtain

∫ r

r0

v(r)
N−mN
N−m f(v(s))

w(s)
1

m−1

s
ds

≤
∫ r

r0

{
w′(s) +

(N −m)w(s)− (m− 1)w(s)
m

m−1

r

}

× exp

(
− m

N −m

∫ s

r0

N −m− (m− 1)w(t)
1

m−1

t
dt

)
ds

≤
[
{w(s)− C̃} exp

(
− m

N −m

∫ s

r0

N −m− (m− 1)w(t)
1

m−1

t
dt

)]r

r0

= −{C̃ − w(r)} exp

(
− m

N −m

∫ r

r0

N −m− (m− 1)w(s)
1

m−1

s
ds

)
+ const

≤ const, r ≥ r0,

where we employ the inequality w(r) ≤ m
N

C̃ < C̃. Therefore (4.10) holds, and so the

proof of Theorem 1.3 is finished.

Proof of Theorem 1.11. The proof is carried out, as before, by contradiction. Suppose

that Eq (1.1) has a nonoscillatory solution. Then ODE (1.2) has a positive solution v(r)

on [r0,∞), r0 being sufficiently large. As in the proof of Theorem 1.3, we have three

possibilities (a),(b) and (c) referred as (4.3). We can easily see that Cases (a) and (b)

never occur, as before.

We assume that Case (c) occurs. We will show that the contradictory property

∫ ∞
rN−1−`−εf(r−

N−m
m−1 )dr < ∞ (4.14)

holds for all sufficiently small ε > 0. By the change of variable u = r−
N−m
m−1 , (4.14) is

rewritten as ∫

0

u
m(`−N+1)−`

N−m
+δf(u)du < ∞,

where δ = m−1
N−m

ε. Moreover, by the change of variable u = v(r) we find that (4.14) is

equivalent to ∫ ∞
v(r)

m(`−N+1)−`
N−m

+δf(v(r))(−v′(r))dr < ∞.

Since v′(r) < 0, (1.8) shows that v satisfies the inequality

(−v′)m−2v′′ +
N − 1

m− 1
· 1

r
(−v′)m−2v′ + c0r

−`f(v) ≤ 0, r ≥ r1
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for some constant c0 > 0 and r1 ≥ r0. We therefore find that

c0v
m(`−N+1)−`

N−m
+δf(v)(−v′)

≤
{

(−v′)m

m

}′
r`v

m(`−N+1)−`
N−m

+δ + c1r
`−1v

m(`−N+1)−`
N−m

+δ(−v′)m, r ≥ r1,

where c1 = (N − 1)/(m− 1) > 0. Hence it suffices to show that the infinite integral

∫ ∞

r1

[{
(−v′(r))m

m

}′
r`v(r)

m(`−N+1)−`
N−m

+δ + c1r
`−1v(r)

m(`−N+1)−`
N−m

+δ(−v′(r))m

]
dr (4.15)

converges. Integrating by parts, we have

∫ r

r1

[{
(−v′(s))m

m

}′
s`v(s)

m(`−N+1)−`
N−m

+δ + c1s
`−1v(s)

m(`−N+1)−`
N−m

+δ(−v′(s))
]

ds

=
1

m
r`(−v′)mv

m(`−N+1)−`
N−m

+δ + c2 − `

m

∫ r

r1

s`−1v(s)
m(`−N+1)−`

N−m
+δ(−v′(s))mds

+
1

m

[
`−m(`−N + 1)

N −m
− δ

] ∫ r

r1

(−v′(s))m+1s`v(s)
m(`−N+1)−`

N−m
−1+δds

+c1

∫ r

r1

s`−1v(s)
m(`−N+1)−`

N−m
+δ(−v′(s))mds

=
1

m
r`(−v′)mv

m(`−N+1)−`
N−m

+δ + c2 +

(
c1 − `

m

) ∫ r

r1

s`−1v(s)
m(`−N+1)−`

N−m
+δ(−v′(s))mds

+
1

m

[
`−m(`−N + 1)

N −m
− δ

] ∫ r

r1

s`(−v′(s))m+1v(s)
m(`−N+1)−`

N−m
−1+δds

≡ A1(r) + c2 +

(
c1 − `

m

)
I2(r) +

1

m

[
`−m(`−N + 1)

N −m
− δ

]
I3(r), r ≥ r1,

where A1, I2, and I3 are defined by the last equality, and c2 is a constant. For A1(r) we

find from (4.1) and (4.2) that

0 ≤ A1(r) ≤ c3r
`
(v

r

)m

v
m(`−N+1)−`

N−m vδ

= c3

(
r

N−m
m−1 v

)− (m−1)(m−`)
N−m

vδ

≤ c4v
δ, r ≥ r1,

where c3 and c4 are positive constants. Hence v(r) = o(1) as r → +∞. On the other
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hand we have

0 ≤ I2(r) ≤
∫ r

r1

s`−1(−v′(s))m−1v(s)
m(`−N+1)−`

N−m
+δ(−v′(s))ds

≤ c5

∫ r

r1

s`−1

(
v(s)

s

)m−1

v(s)
m(`−N+1)−`

N−m
+δ(−v′(s))ds

= c5

∫ r

r1

(
s

N−m
m−1 v(s)

)− (m−1)(m−`)
N−m

v(s)−1+δ(−v′(s))ds

≤ c6

∫ r

r1

v(s)−1+δ(−v′(s))ds

=
c6

δ

{
v(r1)

δ − v(r)δ
}

, r ≥ r1.

Hence I2(r) = O(1) as r → +∞. Similarly we can see that, for any δ > 0, I3(r) = O(1)

as r → +∞. Therefore the infinite integral (4.15) converges, and so (4.14) is established.

This completes the proof.

Proof of Theorems 1.4 and 1.5. As before we show that ODE (1.2) does not have

positive solutions near +∞. Let us perform the change of variable t = r(m−N)/(m−1)(m >

N), and t = log r(m = N), which has been employed in §3. Then (1.2) is transformed

into Eq (3.16), where

ã(t) =





(
m− 1

m−N

)m

t
m(N−1)

m−N a∗(t
m−1
m−N ), m > N,

eNta∗(et), m = N.

Applying the results in [3] we can easily prove the theorems. This completes the proof.
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