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Abstract
In this paper we consider positive solutions of second order quasilinear ordinary

differential equations with singular nonlinearities. We obtain the asymptotic equiv-
alence theorems for asymptotically superlinear solutions and decaying solutions. By
using these theorems, exact asymptotic forms of such solutions are determined. Fur-
thermore, we can establish the uniqueness of decaying solutions as an application
of our results.

1 Introduction

In this paper we consider second order quasilinear ordinary differential equations with
singular nonlinear terms of the form

(|u′|α−1u′)′ = p(t)u−β, t ≥ t0, (1.1)

where α > 0 and β > 0 are constants, and p ∈ C1([t0,∞); (0,∞)). By a solution of (1.1)
we mean a function u such that u and |u′|α−1u′ are of class C1, and u satisfies (1.1) near
+∞. Throughout this paper we shall confine ourselves to the study of these solutions.

Many authors have studied asymptotic properties of positive solutions of quasilinear
ordinary differential equations with singular nonlinearities. For example, the case α = 1
in (1.1) has been treated in [1, 2, 3, 4, 8, 11, 10], and the general case α > 0, for example,
in [7]. One of the generalized types of (1.1)

(f(t)|u′|α−1u′)′ = p(t)u−β

has been treated in [9].
Our main aim is to determine asymptotic forms of every positive solution of (1.1).

Asymptotic forms of positive solutions of (1.1) for the regular cases, that is, for the super-
homogeneous case (−β > α) and the sub-homogeneous case (0 < −β < α) have been
obtained in [5] and [6], respectively. So the results in this paper can be regarded as
analogues of those results. Furthermore our results improve some of the earlier results in
[11] even though α = 1.
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It is known that for every positive solution u of (1.1), exactly one of the following four
cases occurs with respect to its asymptotic behavior:

(i) decaying solution (we call such a solution ”type (D)” or ”(D)− solution”)

lim
t→∞

u′(t) = lim
t→∞

u(t) = 0;

(ii) asymptotically constant solution (”type (AC)”or ”(AC)− solution”)

lim
t→∞

u′(t) = 0 and lim
t→∞

u(t) = const ∈ (0,∞);

(iii) asymptotically linear solution (”type (AL)” or ”(AL)− solution”)

lim
t→∞

u′(t) = lim
t→∞

u(t)

t
= const ∈ (0,∞);

(iv) asymptotically superlinear solution (”type (ASL)” or ”(ASL)− solution”)

lim
t→∞

u′(t) = lim
t→∞

u(t)

t
= +∞.

Necessary and/or sufficient conditions for the existence of each type of solution have been
obtained in [7, 11]: Equation (1.1) has a solution of

type (D) if

∫ ∞



∫ ∞

t

p(s)

(∫ ∞

s

(∫ ∞

r

p(x) dx

) 1
α

dr

)− αβ
α+β

ds




1
α

dt < ∞;

type (AC) if and only if

∫ ∞ (∫ ∞

t

p(s) ds

) 1
α

dt < ∞;

type (AL) if and only if

∫ ∞
t−βp(t) dt < ∞; and

type (ASL) if and only if

∫ ∞
t−βp(t) dt = ∞.

It is not known how positive solutions of type (D) and of type (ASL) behave near
+∞. In order to give asymptotic forms of all possible positive solutions, it is essential to
determine asymptotic forms near +∞ of positive solutions of type (D) and of type (ASL).

Since the asymptotic behavior of solutions of type (D) and of type (ASL) seems to
be influenced strongly by that of p(t), we often require an additional assumption for p,
which means that p behaves like the typical function tσ near +∞, i.e.,

p(t) ∼ tσ as t →∞, (1.2)

where σ ∈ R. Henceforth the notation “f(t) ∼ g(t) as t →∞” means that limt→∞ f(t)/g(t) =
1. In what follows we often write function p as

p(t) = (1 + ε(t))tσ,
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where ε(t) → 0 as t →∞.
When (1.2) is assumed, the results mentioned above and some known results yield

necessary and sufficient conditions for the existence of solutions of type (D), (AC), (AL),
and (ASL), respectively: Equation (1.1) has solutions of

type (D) if and only if σ < −α− 1;

type (AC) if and only if σ < −α− 1;

type (AL) if and only if σ < β − 1; and

type (ASL) if and only if σ ≥ β − 1.

To give an insight into our problem, let us consider the typical case p(t) ≡ tσ:

(|u′|α−1u′)′ = tσu−β. (1.3)

If σ < −α− 1 or σ > β − 1, this equation has an exact positive solution of the form

u0(t) = ĉtk, k =
σ + α + 1

α + β
, ĉ = [αk|k|α−1(k − 1)]−1/(α+β). (1.4)

Note that the conditions σ < −α − 1 and σ > β − 1 are equivalent to k < 0 and
k > 1, respectively. So u0 is a solution of (1.3) of type (D) or of type (ASL) according as
σ < −α − 1 or σ > β − 1. Therefore when function ε is sufficiently small near +∞, we
naturally expect that the positive solutions of (1.1) of type (D) and of type (ASL) will
behave like u0 near +∞. In the paper we will show that this conjecture is true.

This paper is organized as follows. In Section 2 we establish asymptotic equivalence
theorems for positive solutions of type (ASL) and of type (D), which play very important
roles when we determine the asymptotic forms of solutions of these types. In Sections 3
and 4 we give the asymptotic forms of solutions of type (ASL) and type (D), respectively.
In Section 5 we show the uniqueness of (D)-solutions.

At the end of this section, we introduce the next lemma, which is very useful when we
show that some positive solutions of (1.1) are asymptotic to u0.

Lemma 1. Suppose that (1.2) and either σ < −α − 1 or σ > β − 1 holds. Let u be
a positive solution of (1.1) and u0 be given by (1.4). Put v = u/u0 and t = es. Then v
satisfies the equation

v̈ + (2k − 1)v̇ + k(k − 1)v = k(k − 1)|k|α−1(1 + ε̃(s))|v̇ + kv|1−αv−β, (1.5)

where ˙ = d/ds and ε̃(s) = ε(es).

2 Asymptotic equivalence theorems

Let us consider the following two equations of the same form for t ≥ t0:

(|x′|α−1x′)′ = a(t)x−β, (2.1)

(|y′|α−1y′)′ = b(t)y−β, (2.2)
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where α > 0 and β > 0 are constants, and a, b ∈ C([t0,∞); (0,∞)).

Theorem 1. Suppose that 0 < β < α and

lim
t→∞

a(t)

b(t)
= 1.

(i) Let x and y be (ASL)-solutions of (2.1) and of (2.2), respectively, such that
lim inft→∞ x(t)/y(t) > 0. Then x(t) ∼ y(t) as t →∞.
(ii) Let x and y be (D)-solutions of (2.1) and of (2.2), respectively, such that
lim inft→∞ x(t)/y(t) > 0. Then x(t) ∼ y(t) as t →∞.

Proof. We prove only (i) because (ii) can be proved similarly.
From the assumption, there exist constants δ,m > 0 such that b(t) ≥ δa(t) and

my(t) ≤ x(t) for large t. We then obtain from (2.1) and (2.2) that

[(y′(t))α]′ ≥ δa(t)

(
x(t)

m

)−β

= δmβ[(x′(t))α]′

for t ≥ t1, which is sufficiently large. Integrating this inequality on [t1, t], we have y′(t) ≥
c1x

′(t) for some constant c1 > 0 near +∞. One more integration shows that

lim sup
t→∞

x(t)

y(t)
≡ L ∈ (0,∞)

exists. Let us put

lim inf
t→∞

x(t)

y(t)
≡ l ∈ (0,∞).

Then a variant of l’Hospital’s rule [6, Lemma 2.3] yields

L = lim sup
t→∞

x(t)

y(t)
≤ lim sup

t→∞

x′(t)
y′(t)

=

(
lim sup

t→∞

|x′(t)|α−1x′(t)
|y′(t)|α−1y′(t)

) 1
α

≤
(

lim sup
t→∞

[|x′(t)|α−1x′(t)]′

[|y′(t)|α−1y′(t)]′

) 1
α

=

(
lim sup

t→∞

a(t)x(t)−β

b(t)y(t)−β

) 1
α

≤ l−
β
α .

Similarly we obtain l ≥ L−β/α. These inequalities mean that Llβ/α ≤ 1 ≤ lLβ/α, i.e.,
l(β/α)−1 ≤ L(β/α)−1. Since 0 < β < α, this implies that L = l = limt→∞ x(t)/y(t) = 1, i.e.,
x(t) ∼ y(t) as t →∞. 2

3 Asymptotic forms of asymptotically superlinear so-

lutions

In this section we will determine asymptotic forms of (ASL)-solutions. From the obser-
vation in Introduction, we already know that equation (1.1) has an (ASL)-solution if and
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only if
∫ ∞

t−βp(t) dt = ∞. (3.1)

Throughout the section we assume (3.1).
For the sake of convenience, we introduce auxiliary positive functions Q(t) and R(t)

defined by

Q(t) =

∫ t

t0

s−βp(s) ds

and

R(t) =

∫ t

t0

Q(s)1/(α+β) ds,

respectively. Clearly limt→∞ Q(t) = limt→∞ R(t)/t = ∞ since (3.1) is assumed.
First we prepare the following lemma for the estimates of growth rate of (ASL)-

solutions.

Lemma 2. Suppose that (3.1) holds. Then any (ASL)- solution u of (1.1) satisfies

lim inf
t→∞

u(t)

R(t)
≥

(
α + β

α

)1/(α+β)

. (3.2)

Proof. Since u′ is eventually monotone increasing, we have for t ≥ t1

u(t) =

∫ t

t1

u′(s) ds + u(t1) ≤ (t− t1)u
′(t) + u(t1),

where t1 ≥ t0 is sufficiently large. Hence

u′(t)β ≥ t−βu(t)β(1 + o(1)) as t →∞.

Multiplying this by (u′(t)α)′ and using equation (1.1), we see

(
αu′(t)α+β

α + β

)′
≥ t−βp(t)(1 + o(1)) as t →∞.

Integrating this on [t1, t], we obtain

αu′(t)α+β

α + β
≥ (1 + o(1))Q(t) as t →∞,

that is

u′(t) ≥ (1 + o(1))

(
α + β

α

)1/(α+β)

Q(t)1/(α+β) as t →∞.

Then, one more integration yields (3.2). 2
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Using this lemma, we can determine the asymptotic form of (ASL)-solutions of (1.1)
by Theorem 1:

Theorem 2. Suppose that (3.1) and

lim
t→∞

R(t)

tQ(t)1/(α+β)
= a ∈ (0,∞) (3.3)

holds for some a.
(i) Let 0 < β < α. Then any (ASL)-solution u of (1.1) satisfies

u(t) ∼
(

α + β

α

)1/(α+β)

a−β/(α+β)R(t) as t →∞.

(ii) If (3.3) with a = 1 holds, then any (ASL)-solution u of (1.1) satisfies

u(t) ∼
(

α + β

α

)1/(α+β)

R(t) as t →∞.

Proof. Let us consider the equation

(|x′|α−1x′)′ = a−β

[
R(t)

tQ(t)1/(α+β)

]β

p(t)x−β.

Since a−β[R/(tQ1/(α+β))]β → 1 as t → ∞, the coefficient function of this equation is
asymptotic to that of (1.1). Furthermore we notice that this equation has an (ASL)-
solution given by

x(t) =

(
α + β

α

)1/(α+β)

a−β/(α+β)R(t).

(i) Since Lemma 2 gives

lim inf
t→∞

u(t)

x(t)
≥ a−β/(α+β), (3.4)

Theorem 1 implies that u(t) ∼ x(t). The proof is completed.
(ii) Clearly (3.4) with a = 1 holds, i.e., lim inft→∞ u(t)/x(t) ≥ 1. On the other hand

as in the proof of Theorem 1 we have

lim sup
t→∞

u(t)

x(t)
≤

(
lim sup

t→∞

u(t)−β

x(t)−β

)1/α

≤
(

lim inf
t→∞

(
u(t)

x(t)

))−β/α

≤ 1.

Hence limt→∞ u(t)/x(t) = 1. 2

Theorem 2 yields the following corollary for equation (1.1) under condition (1.2) (Re-
call that in this case (1.1) has an (ASL)-solution if and only if σ ≥ β − 1.):
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Corollary 1. Suppose that (1.2) holds.
(i) Let 0 < β < α. If σ > β − 1, then any (ASL)-solution u of (1.1) has the asymptotic
form

u(t) ∼ u0(t) ≡ ĉtk, (3.5)

where u0 is given by (1.4).
(ii) If σ = β − 1, then any (ASL)-solution u of (1.1) has the asymptotic form

u(t) ∼
(

α + β

α

)1/(α+β)

t(log t)1/(α+β).

Now we consider the case that Theorem 1 can not cover, i.e., the case where 0 < α ≤ β.
To show that u ∼ u0 under some additional conditions, we prepare several lemmas:

Lemma 3. Suppose that (1.2) holds with σ > β − 1. Then for each (ASL)-solution u of
(1.1) we have

0 < lim inf
t→∞

u

u0

≤ lim sup
t→∞

u

u0

< ∞ and 0 < lim inf
t→∞

u′

u′0
≤ lim sup

t→∞

u′

u′0
< ∞,

where u0(t) ≡ ĉtk is given by (1.4).

Proof. From Lemma 2, we see that there exists positive constant c1 satisfying u(t) ≥
c1t

k for large t. Substituting this estimate on the right hand side of equation (1.1) and
integrating the resulting inequality from t0 to t, we obtain

u′(t) ≤ c2t
k−1, u(t) ≤ c3t

k for large t,

where c2 and c3 are positive constants. After simple computation we also obtain u′(t) ≥
c4t

k−1 for large t and positive constant c4. 2

Lemma 4. Suppose that (1.2) holds with σ > β−1. Let u be an (ASL)-solution of (1.1).
Put t = es and v(s) = u(t)/u0(t). Then
(i) we have

0 < lim inf
s→∞

v ≤ lim sup
s→∞

v < ∞;

v̇ = O(1); and

0 < lim inf
s→∞

(v̇ + kv) ≤ lim sup
s→∞

(v̇ + kv) < ∞

for large s, where ˙ = d/ds.
(ii) v(s) satisfies

v̈ + (2k − 1)v̇ + k(k − 1)v = kα(k − 1)(1 + ε̃(s))(v̇ + kv)1−αv−β. (3.6)

(iii) v̈ = O(1) as s →∞.
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Proof. (i) The boundedness of v and v̇ is a direct consequence of Lemma 3. The last
relation follows from the formula v̇ + kv = ĉt1−ku′ and Lemma 3.
(ii) We know by Lemma 1 that v(s) satisfies equation (1.5); and so (3.6) holds by (i).
(iii) This follows from (i) and equation (3.6).

Lemma 5. Let α ≥ 1 and v(s) be as in Lemma 4. Suppose that (1.2) with σ > β − 1
and either

∫ ∞ ε(t)2

t
dt < ∞ (3.7)

or
∫ ∞

|ε′(t)| dt < ∞ (3.8)

holds. Then
∫∞

v̇2 ds < ∞ and v̇ → 0 as s →∞.

Proof. Since α ≥ 1, we see that (v̇ + kv)1−α ≤ k1−αv1−α if v̇ ≥ 0, and (v̇ + kv)1−α ≥
k1−αv1−α if v̇ ≤ 0. Hence (v̇+kv)1−αv̇ ≤ k1−αv1−αv̇ for all sufficiently large s. Multiplying
(3.6) by v̇ and using this estimate, we obtain

v̈v̇ + (2k − 1)v̇2 + k(k − 1)vv̇ ≤ k(k − 1)(1 + ε̃(s))v1−α−β v̇.

Without losing generality we may assume that α+β 6= 2. Integrating the above inequality
from s0 to s, we find

v̇(s)2

2
+ (2k − 1)

∫ s

s0

v̇(r)2 dr +
k(k − 1)

2
v(s)2 + c1

≤ k(k − 1)v(s)2−α−β

2− α− β
+ k(k − 1)

∫ s

s0

ε̃(r)v(r)1−α−β v̇(r) dr,

where c1 is a constant. From Lemma 4 this inequality yields

(2k − 1)

∫ s

s0

v̇(r)2 dr + O(1) ≤ k(k − 1)

∫ s

s0

ε̃(r)v(r)1−α−β v̇(r) dr, (3.9)

as s →∞.
First we consider the case where (3.7) holds. We obtain

(2k − 1)

∫ s

s0

v̇(r)2 dr + O(1) ≤ k(k − 1)

∫ s

s0

|ε̃(r)|v(r)1−α−β|v̇(r)| dr

≤ c2

∫ s

s0

|ε̃(r)||v̇(r)| dr,

where c2 is a positive constant. Invoking Schwarz’s inequality, we have

∫ s

s0

v̇(r)2 dr + O(1) ≤ c3

(∫ s

s0

ε̃(r)2 dr

)1/2 (∫ s

s0

v̇(r)2 dr

)1/2

,
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where c3 is a positive constant. Noting that condition (3.7) is equivalent to
∫ ∞

ε̃(s)2 ds < ∞,

we have
∫∞

v̇2 ds < ∞. From the fact that v̈ is bounded and Lemma 6 in [5] we know
that v̇ → 0 as s →∞.

Next when (3.8) holds, we note that (3.8) is equivalent to
∫ ∞

| ˙̃ε(r)| dr < ∞.

In this case we can show that v̇ ∈ L2[s0,∞) by integral by parts. In fact, since

∫ s

s0

ε̃(r)v(r)1−α−β v̇(r) dr =

[
ε̃(r)v(r)2−α−β

2− α− β

]s

s0

−
∫ s

s0

˙̃ε(r)v(r)2−α−β

2− α− β
dr = O(1) as s →∞,

(3.9) implies that
∫∞

v̇2 ds < ∞. This yields v̇ → 0 as s →∞ as in the previous case. 2

Theorem 3. Let α ≥ 1. Suppose that (1.2) with σ > β − 1 and either (3.7) or (3.8)
holds. Then every (ASL)-solution u of (1.1) has the asymptotic form u(t) ∼ u0(t) where
u0 is given by (1.4).

Proof. We will show that lims→∞ v(s) = 1, where v is given in Lemma 4. Define an auxil-
iary function f by f(s) = (1+ε̃(s))1/(α+β) for sufficiently large s. Clearly lims→∞ f(s) = 1.
Note that if v attains an extremum at some point s1, then we have

v̈(s1) = k(k − 1)v(s1)[(1 + ε̃(s1))v(s1)
−α−β − 1]. (3.10)

Hence if v̇ = 0 and v > f(s), then v̈ < 0 there, by (3.10). This means that only maxima
can occur in the region v > f(s). Similarly, in the region 0 < v < f(s) only minima can
occur. This observation plays an important role in what follows. The proof is divided
into two cases:
Case 1: v̇ ≥ 0 near +∞ or v̇ ≤ 0 near +∞;
Case 2: v̇ changes the sign in every neighborhood of +∞.

Let Case 1 occur. In this case lims→∞ v = m ∈ (0,∞) exists by Lemma 4. Since
lims→∞ v̇ = 0 (from Lemma 5), letting s →∞ in (3.6), we have

lim
s→∞

v̈ = k(k − 1)m(m−α−β − 1).

This implies that v̈ has a positive finite limit as s → ∞. This must be 0 since v̇ = O(1)
as s →∞. Hence m = 1 (= lims→∞ v).

Next let Case 2 occur. In this case the solution curve v = v(s) must hit the curve
v = f(s) in any neighborhood of +∞. Hence neither 0 < lim infs→∞ v ≤ lim sups→∞ v < 1
nor 1 < lim infs→∞ v ≤ lim sups→∞ v < ∞ can happen. To prove lims→∞ v = 1, we
suppose to the contrary that this fails to hold. Then we find that

0 < lim inf
s→∞

v ≤ 1 ≤ lim sup
s→∞

v < ∞; and lim inf
s→∞

v 6= lim sup
s→∞

v. (3.11)

9



If lim sups→∞ v ≡ L > 1, there are two sequences {ηn} and {ξn} satisfying

ξn < ηn < ξn+1, lim
n→∞

ξn = lim
n→∞

ηn = ∞;

v(ξn) = f(ξn), v̇(ηn) = 0;

v(s) > f(s) in (ξn, ηn);

v̇(s) ≥ 0 on [ξn, ηn];

limn→∞ v(ηn) = L.

Multiplying (3.6) by v̇ and integrating the resulting equation from ξn to ηn, we see

−1

2
v̇(ξn)2 + (2k − 1)

∫ ηn

ξn

v̇(r)2 dr +
k(k − 1)

2

(
v(ηn)2 − v(ξn)2

)

= k(k − 1)

∫ ηn

ξn

(1 + ε̃(r))

(
1 +

v̇(r)

kv(r)

)1−α

v(r)1−α−β v̇(r) dr.

Without losing generality we may assume that α + β 6= 2. Since v̇ ≥ 0 on [ξn, ηn], we find
from the mean value theorem that there exists yn ∈ (ξn, ηn) satisfying

∫ ηn

ξn

(1 + ε̃(r))

(
1 +

v̇(r)

kv(r)

)1−α

v(r)1−α−β v̇(r) dr

= (1 + ε̃(yn))

(
1 +

v̇(yn)

kv(yn)

)1−α ∫ ηn

ξn

v(r)1−α−β v̇(r) dr.

Hence we obtain

−1

2
v̇(ξn)2 + (2k − 1)

∫ ηn

ξn

v̇(r)2 dr +
k(k − 1)

2

(
v(ηn)2 − f(ξn)2

)

=
k(k − 1)(1 + ε̃(yn))

2− α− β

(
1 +

v̇(yn)

kv(yn)

)1−α (
v(ηn)2−α−β − f(ξn)2−α−β

)
.

Since f → 1, v̇ → 0 as s → ∞,
∫∞

v̇2 ds < ∞ and lim infs→∞ v > 0, we have by letting
n →∞ in this equation

L2 − 1

2
=

L2−α−β − 1

2− α− β
.

This equation holds only for L = 1, which contradicts the assumption L > 1. Hence
L = lim sups→∞ v(s) = 1. Similarly we can show that lim infs→∞ v(s) = 1. These results
imply lims→∞ v(s) = 1, contradicting (3.11). This completes the proof. 2

4 Asymptotic forms of decaying solutions

In this section we deal with (D)-solutions of (1.1). There seems to be some difficulty
in analyzing asymptotic behavior of the (D)-solution of (1.1). Hence we can not derive
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general asymptotic formulas similar to that for (ASL)-solutions shown in Theorem 2. We
intend to establish asymptotic formulas of (D)-solutions under condition (1.2).

Lemma 6. Suppose that (1.2) holds for σ < −α− 1. Then each (D)-solution u of (1.1)
satisfies

0 < lim inf
t→∞

u

u0

≤ lim sup
t→∞

u

u0

< ∞ and 0 < lim inf
t→∞

−u′

−u′0
≤ lim sup

t→∞

−u′

−u′0
< ∞, (4.1)

where u0(t) ≡ ĉtk is given by (1.4).

Proof. We have

−u′(t) =

(∫ ∞

t

p(s)u(s)−β ds

)1/α

. (4.2)

Since u(t) is a decreasing function, we obtain for some positive constant c1

−u′(t) ≥ u(t)−β/α

(∫ ∞

t

p(s) ds

)1/α

≥ c1t
(σ+1)/αu(t)−β/α,

which implies the first inequality of the first property of (4.1). Therefore (4.2) yields for
some constant c2 > 0

−u′(t) ≤
(∫ ∞

t

p(s)(c2s
k)−β ds

)1/α

,

which implies −u′(t) = O(tk−1) and u(t) = O(tk). The remainder inequality can be proved
similarly. 2

Lemma 7. Suppose that (1.2) holds with σ < −α− 1. Let u be a (D)-solution of (1.1).
Put v = u(t)/u0(t) and t = es.

(i) We have

0 < lim inf
s→∞

v ≤ lim sup
s→∞

v < ∞;

v̇ = O(1); and

0 < lim inf
s→∞

(−v̇ − kv) ≤ lim sup
s→∞

(−v̇ − kv) < ∞.

(ii) v(s) satisfies

v̈ + (2k − 1)v̇ + k(k − 1)v = (−k)α(1− k)(1 + ε̃(s))(−v̇ − kv)1−αv−β. (4.3)

(iii) v̈ = O(1) as s →∞.

This lemma can be proved as in the proof of Lemma 4. Hence the verification is left
to the reader.
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Lemma 8. Let α ≥ 1 and v(s) be as in Lemma 7. Suppose that (1.2) with σ < −α − 1
and either (3.7) or (3.8) holds. Then

∫∞
v̇2 ds < ∞ and v̇ → 0 as s →∞.

Proof. The proof is similar to that of Lemma 5. In fact, a simple consideration shows
that (−v̇− kv)1−αv̇ ≥ (−k)1−αv1−αv̇ since α ≥ 1. Therefore, by multiplying both sides of
(4.3) by v̇, we have

v̈v̇ + (2k − 1)v̇2 + k(k − 1)vv̇ ≥ (−k)(1− k)(1 + ε̃(s))v1−α−β v̇.

Proceeding exactly as in the proof of Lemma 5, we can establish the lemma.

Theorem 4. Let 0 < β < α. Suppose that (1.2) holds for σ < −α − 1. Then every
(D)-solution u of (1.1) has the asymptotic form u(t) ∼ u0(t) where u0 is given by (1.4).

Theorem 5. Let α ≥ 1. Suppose that (1.2) with σ < −α − 1 and either (3.7) or (3.8)
holds. Then every (D)-solution u of (1.1) has the asymptotic form u(t) ∼ u0(t).

Theorem 4 can be shown by using Theorem 1 and Lemma 6 immediately. Theorem 5
may be proved in the same way as in the previous section. However, we will give a proof
of another type by using binomial expansion.

From the foregoing theorems we can determine the asymptotic forms of (ASL)-solutions
and (D)-solutions in some cases. But, unfortunately, we can not obtain them when α ≤ β
and α < 1. (See Example 1 given later.)

Proof of Theorem 5. It suffices to show that lims→∞ v = 1, where v is given in Lemma
7. We observe that (4.3) can be rewritten in the form

v̈(−v̇ − kv)α−1 + (2k − 1)v̇(−v̇ − kv)α−1 + k(k − 1)v(−v̇ − kv)α−1

= (1− k)(−k)α(1 + ε̃(s))v−β.

Multiplying this by v̇ and integrating the resulting equation from s0 to s, we obtain
∫ s

s0

v̈v̇(−v̇ − kv)α−1 dr + (2k − 1)

∫ s

s0

v̇2(−v̇ − kv)α−1 dr

+k(k − 1)

∫ s

s0

vv̇(−v̇ − kv)α−1 dr

= (1− k)(−k)α

∫ s

s0

v−β v̇ dr + (1− k)(−k)α

∫ s

s0

ε̃(r)v−β v̇ dr.

Since
∫∞

v̇2 ds < ∞ and assumption (3.7) or (3.8) holds, the second integral on the left-
hand side and the last integral on the right-hand side are convergent. Hence we can
rewrite this formula simply in the form

(−k)α−1

∫ s

s0

v̈v̇vα−1

(
1 +

v̇

kv

)α−1

dr + k(k − 1)

∫ s

s0

vv̇(−v̇ − kv)α−1 dr (4.4)
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=
(−k)α(1− k)

1− β
v(s)1−β + L1(s),

where L1 is a continuous function having a finite limit as s →∞. (Assuming β 6= 1 here
loses no generality.) We will show from (4.4) that v has a finite limit as s →∞.

As the first step, we consider the first integral on the left-hand side of (4.4). Since
v̇/kv → 0 as s → ∞, from the formula of binomial expansion, we obtain for sufficiently
large s0 (

1 +
v̇

kv

)α−1

= 1 +
(α− 1)v̇

kv
+

∞∑
n=2

dn

(
v̇

kv

)n

, s ≥ s0,

where dn = (α− 1)(α− 2) · · · (α− n)/n!. Hence we see that

∫ s

s0

v̈v̇vα−1

(
1 +

v̇

kv

)α−1

dr =

[
v̇2vα−1

2

]s

s0

− α− 1

2

∫ s

s0

v̇3vα−2 dr (4.5)

+
α− 1

k

∫ s

s0

v̈v̇2vα−2 dr +

∫ s

s0

v̈v̇vα−1

( ∞∑
n=2

dn

(
v̇

kv

)n
)

dr.

We may assume that α 6∈ N . Since
∫∞

v̇2 ds < ∞, and v and v̈ are bounded, the first
integral and the second one on the right-hand side of (4.5) are convergent. We will show
that the last integral on the right-hand side of (4.5) converges as s →∞. To this end it
suffices to show that the estimate

∣∣∣∣∣v̈v̇vα−1

∞∑
n=2

dnv̇
n

(kv)n

∣∣∣∣∣ ≤ c1v̇
2 (4.6)

holds for sufficiently large s with some constant c1. Let M1 = M1(s0) = maxs≥s0 |v̇| and
M2 = M2(s0) = mins≥s0 v. Then

∣∣∣∣∣v̈v̇vα−1

∞∑
n=2

dnv̇
n

(kv)n

∣∣∣∣∣ ≤ c2

( ∞∑
n=2

|dn|Mn−1
1

|k|nMn
2

)
v̇2

for some positive constant c2. If s0 is sufficiently large, we see M1/|k|M2 < 1, for v̇ → 0
as s →∞. From the fact

|dn+1|Mn
1 /|k|n+1Mn+1

2

|dn|Mn−1
1 /|k|nMn

2

=
|α− n− 1|M1

|k|(n + 1)M2

→ M1

|k|M2

as n →∞

we find that the infinite series
∑∞

n=2(|dn|Mn−1
1 )/(|k|nMn

2 ) absolutely converges. Hence
(4.6) holds near +∞, and so the last integral on the right hand side of (4.5) converges as
s →∞. It follows therefore that (4.4) reduces to the formula

k(k − 1)

∫ s

s0

vv̇(−v̇ − kv)α−1 dr =
(−k)α(1− k)

1− β
v(s)1−β + L2(s), (4.7)

where L2 is a continuous function having a finite limit as s →∞.
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Lastly we consider the left hand side of (4.7). As before, this term can be rewritten
in the form

(1− k)(−k)α

∫ s

s0

v̇vα

(
1 +

(α− 1)v̇

kv
+

∞∑
n=2

dnv̇
n

(kv)n

)
dr.

Employing the same method as above, we can show that

∣∣∣∣∣v̇vα

∞∑
n=2

dnv̇
n

(kv)n

∣∣∣∣∣ ≤ c3v̇
2

for sufficiently large s, where c3 is a positive constant. Hence (4.7) can be rewritten in
the form

(1− k)(−k)α

1 + α
v(s)1+α =

(−k)α(1− k)

1− β
v(s)1−β + L3(s),

where L3 is a function having a finite limit as s →∞.
From this identity we see that v has a finite limit: lims→∞ v(s) = m ∈ (0,∞). Since

v̇ → 0, letting s →∞ in equation (4.3), we have m = 1. 2

Our results in this section and in Section 3 enable us to determine the asymptotic
forms of all positive solutions of (1.1) precisely if p(t) ∼ tσ:

Example 1. Let 0 < β < α and (1.2) hold.
(i) If σ < −α − 1, then each positive solution u of (1.1) has one of the following

asymptotic forms as t →∞:

u(t) ∼ u0(t);

u(t) ∼ c1; or

u(t) ∼ c2t,

where u0 is given by (1.4), and c1, c2 > 0 are constants depending on u.
(ii) If −α− 1 ≤ σ < β − 1, then every positive solution u of (1.1) satisfies

u(t) ∼ c1t,

where c1 > 0 is a constant depending on u.
(iii) If σ = β − 1, then every positive solution u of (1.1) satisfies

u(t) ∼
(

α + β

α

)1/(α+β)

t (log t)1/(α+β) .

(iv) If σ > β − 1, then every positive solution u of (1.1) satisfies

u(t) ∼ u0(t),

where u0 is given by (1.4).
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Example 2. Let α ≥ 1 and (1.2) hold. Suppose moreover that either
∫ ∞ 1

t

∣∣∣∣
p(t)

tσ
− 1

∣∣∣∣
2

dt < ∞
or ∫ ∞ ∣∣∣∣

(
p(t)

tσ

)′∣∣∣∣ dt < ∞

holds, which are equivalent to (3.7) and (3.8), respectively. Then the conclusion of Ex-
ample 1 is still valid.

5 Uniqueness of decaying solutions

In this section we discuss the uniqueness of (D)-solutions of (1.1).

Theorem 6. Under the assumption either of Theorem 4 or of Theorem 5, (1.1) has at
most one (D)-solution.

To see this result we need the following lemma, which may be well known. However,
we give the proof, since we could not find a rigorous proof in any literature.

Lemma 9. Consider the 2-dimensional system

w′ = (A + B(t)) w + f(t,w), t ≥ t0 (5.1)

where A is a 2 by 2 constant matrix whose characteristic roots have all positive real
parts, B(t) = (bij(t))i,j=1,2 is a 2 by 2 continuous matrix satisfying limt→∞ B(t) = 0,
and f(t,w) = (fi(t,w))i=1,2 is a continuous vector satisfying limw→0 |f(t,w)|/|w| = 0
uniformly in t. If there exists a solution w(t) = (wi(t))i=1,2 satisfying limt→∞ w(t) = 0,
then w(t) ≡ 0.

Proof. We suppose to the contrary that there exists a solution w such that limt→∞ w(t) =
0 and w(t) 6≡ 0. Let λ1 and λ2 be the characteristic roots of A. Then there are three
possibilities for (λ1, λ2):

(i) λ1, λ2 > 0, and λ1 6= λ2;
(ii) λ1, λ2 6∈ R, and λ1 6= λ2;
(iii) λ1 = λ2 > 0.
Let case (i) occur. We may assume that A = diag(λ1, λ2). We then have

1

2

d

dt

(|w|2) =
1

2

d

dt
(w2

1 + w2
2)

= λ1w
2
1 + λ2w

2
2 +

(
b11w

2
1 + b22w

2
2

)
+ (b12 + b21) w1w2 + w1f1 + w2f2.

Put λ = min{λ1, λ2} > 0 and choose a δ > 0 so small that λ− (2+
√

2)δ > 0. Then there
is a t1 sufficiently large satisfying

|bij(t)| < δ and |fi(t,w(t))| ≤ δ|w(t)|, t ≥ t1
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for all i and j. It follows therefore that

1

2

d

dt

(|w|2) ≥ λ|w|2 − 2δ|w|2 − δ|w|
√

(|w1|+ |w2|)2

≥ (λ− (2 +
√

2)δ)|w|2, t ≥ t1.

Hence we obtain |w(t)|2 ≥ |w(t1)|2 exp{2(λ− (2 +
√

2)δ)(t− t1)}. Since t1 can be chosen
so that |w(t1)| 6= 0, this implies that limt→∞ |w(t)| = ∞, which contradicts the fact
limt→∞ w(t) = 0.

Let case (ii) occur. Put µ = Re λ1 (> 0) and ν = Im λ1 (6= 0). It is well-known that
there is a non-singular matrix P satisfying

P−1AP =

(
µ ν
−ν µ

)
.

So we may assume

A =

(
µ ν
−ν µ

)

losing no generality and we can obtain a contradiction by the same method as in case (i).
Finally let case (iii) occur. Assuming that A is not semi-simple loses no generality.

We observe that for any ρ 6= 0 we have
(

1 1
0 ρ

)−1 (
λ1 1
0 λ1

)(
1 1
0 ρ

)
=

(
λ1 ρ
0 λ1

)
.

Hence we may assume that

A =

(
λ1 δ
0 λ1

)
,

where δ > 0 is a sufficiently small constant. Then we also have a contradiction as before.
2

Proof of Theorem 6. Let g(t) and h(t) be (D)-solutions of (1.1). By Theorem 4 or
5 we know that g(t), h(t) ∼ ĉtk, where ĉtk = u0(t) are given by (1.4). Furthermore, it is
easy to see that g′(t), h′(t) ∼ ĉktk−1.

Put v = g/h and t = es. Then v satisfies

v̈ +
2ḣ− h

h
v̇ +

1 + ε̃(s)

αh1+β
e(σ+α+1)s(−ḣ)1−αv =

1 + ε̃(s)

αh1+β
e(σ+α+1)s(−v̇h− vḣ)1−αv−β,

where ˙ = d/ds and ε̃(s) = ε(es). From Theorem 4 or 5 we see that lims→∞ v = 1.
Moreover we can easily see that lims→∞ v̇ = 0. Let us introduce the new variables x =
v − 1, y = (−v̇ − vḣ/h)α − (−ḣ/h)α. Then x → 0, y → 0 as s → ∞, and this equation
can be reduced to the system





ẋ = − ḣ(x + 1)

h
−

[
y +

(
−ḣ

h

)α]1/α

,

ẏ = (1 + ε̃(s))e(σ+α+1)sh−α−β(1− (x + 1)−β) + αy

(
1− ḣ

h

)
,
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that is




ẋ = −k(1 + δ1(s))x− (−k)1−α

α
(1 + δ1(s))

1−αy + o(y),

ẏ = α(−k)α(1− k)(1 + ε̃(s))(1 + δ2(s))(βx + o(x)) + α[1− k(1 + δ1(s))]y,

where δ1(s) = (ḣ/(kh))−1 and δ2(s) = ĉ−1(1+ ε̃(s))he−ks−1. We note that δ1(s), δ2(s) →
0 as s →∞. Let

w =

(
x
y

)
, A =

( −k −(−k)1−α/α
αβ(−k)α(1− k) α(1− k)

)
.

Then we can reduce this system to the form (5.1) and find that all the assumptions of
Lemma 9 are satisfied, since the eigenvalues of A given by

α− k(1 + α)±
√
{α− k(1 + α)}2 + 4k(1− k)(α + β)

2

have positive real parts. From Lemma 9 we obtain w ≡ 0; that is g ≡ h. This completes
the proof. 2
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