LOCAL ISOMETRIC IMBEDDINGS OF P2(H) AND P?(Cay)
YOSHIO AGAOKA AND EIJI KANEDA

ABSTRACT. We investigate local isometric imbeddings of the quaternion projective plane
P%(H) and the Cayley projective plane P?(Cay) into the Euclidean spaces. We prove a
non-existence theorem of local isometric imbeddings (see Theorem 2), by which we can
conclude that the isometric imbeddings given in Kobayashi [7] are the least dimensional
isometric imbeddings of P?(H) and P*(Cay).

1. INTRODUCTION

In this paper we investigate local isometric imbeddings of the quaternion projective
plane P?(H) and the Cayley projective plane P?(Cay) into the Euclidean spaces.

In [5], we determined the pseudo-nullity p(G/K) for each compact rank one symmetric
space G/K. (For the definition of the pseudo-nullity, see [5].) Utilizing p(G/K), we have
obtained the following result concerning the non-existence of isometric imbeddings of the
complex projective spaces P"(C) (n > 2), the quaternion projective spaces P"(H) (n > 2)
and the Cayley projective plane P?(Cay) (see Theorem 5.6 of [5]).

Theorem 1. Let G/K be one of the complezx projective space P"(C) (n > 2), the quater-
nion projective space P"(H) (n > 2) and the Cayley projective plane P?(Cay). Define an
integer ¢(G/K) by setting ¢(G/K) = 2dimG/K — p(G/K), i.e.,

min{4n — 2,3n + 1}, if G/K = P"(C)(n > 2),
q(G/K) = { min{8n — 3,7n + 1}, if G/K = P"(H) (n > 2),
25, if G/K = P?(Cay).

Then, any open set of G/K cannot be isometrically imbedded into the Euclidean space R?
with Q@ < ¢(G/K) — 1.

As is well known, P"(C) (resp. P"(H), resp. P?(Cay)) can be globally isometrically
imbedded into R™ 2" (resp. R2"*3" resp. R?6) (see Kobayashi [7]). By these facts,
it follows that if G/K = P?(H) or P?(Cay), then G/K can be isometrically imbedded
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into RNG/E)+1 " Then a natural question arises: Is there any isometric imbedding of
G/K = P?(H) or P?(Cay) into the Euclidean space RIG/K) ?

In this paper, we will solve this problem. The main result of this paper is the following

Theorem 2. Let G/K be the quaternion projective plane P?(H) or the Cayley projective
plane P%(Cay). Then any open set of G/K cannot be isometrically imbedded into the
FEuclidean space RU(G/K) Accordingly, RUG/K)*L s the least dimensional Euclidean space

into which G/K can be locally isometrically imbedded.

2. THE GAUSS EQUATION

In the following G/K implies the quaternion projective plane P2(H) = Sp(3)/Sp(2) x
Sp(1) or the Cayley projective plane P?(Cay) = F,/Spin(9).

Let g (resp. £) be the Lie algebra of G (resp. K). Let g = €+ m be the canonical
decomposition of g associated with the Riemannian symmetric pair (G, K). We denote by
(, ) the inner product of g given by the (—1)-multiple of the Killing form of g. As usual
we identify m with the tangent space T,(G/K) at the origin 0o = {K} € G/K. We assume
that the G-invariant Riemannian metric g of G/K satisfies g(X,Y) = (X,Y) (X,Y € m).

Then the curvature tensor R at o is given by

R(X,Y)Z =-[[X,Y], Z], VX,Y,Z € m. (2.1)

Suppose that there is a local isometric imbedding of G/K into the Euclidean space RO,
i.e., there is an open set U of G/K and an isometric imbedding f of U into R?. Because
of homogeneity, we may assume that U contains the origin o € G/K. Let N be the normal
space of f(U) at f(o) and let (, ) be the inner product of N induced from the canonical
inner product of R?. Then N is a vector space with dim N = @ —dim G/K and the second
fundamental form ¥ of f at o, which is regarded as an N-valued symmetric bilinear form

on m, must satisfy the following Gauss equation:
2.2
VX,Y,Z, W € m.

On the contrary, we can prove

Theorem 3. Let G/K = P?(H) or P?(Cay). If dimN < ¢(G/K) — dimG/K, then the
Gauss equation (2.2) does not admit any solution, i.e., there is no N-valued symmetric

bilinear form ¥ on m satisfying (2.2).

Theorem 3 implies that if G/K = P?(H) or P?(Cay), then there is no local isometric
imbedding of G/K into RXG/K), proving Theorem 2.
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We now make a preparatory discussion for the proof of Theorem 3.

Take and fix a maximal abelian subspace @ of m. Then we have dima = 1, because
rank(G/K) = 1. We consider the root space decompositions of ¢ and m with respect to a.
Let A € a. We define subspaces €¢(\) (C €) and m(X) (C m) by setting

e = {X ee|[H,[H,X]] = —(\ H)’X, VHea},

m(\) = {¥ em|[H, [1,Y]] =~ (\, H)Y, VHe€a}.
A is called a restricted root when m(\) # 0. We denote by X' the set of non-zero re-
stricted roots. In the case where G/K = P?(H) or P%(Cay), it is well known that there

is a restricted root p such that ¥ = {4, +2u} and it holds the following root space

decompositions:

t=2%(0) + &(u) + €(2u) (orthogonal direct sum), (2.3)
m =m(0) + m(u) + m(2u) (orthogonal direct sum), (2.4)

where m(0) = a = Ry (see § 5 of [5]). In the following discussions we fix this restricted
root p and decompositions (2.3) and (2.4).

For convenience, for each integer i we set & = ¥(|i|u), m;y = m(Ji|u) (i < 2) and
¢, =m; =0(]7] > 2). Then we have

Proposition 4. (1) Let i,j =0,1,2. Then:
[t 8] C iy + iy, [miymy] Cliy+ iy, [l my] Cmay +miy (2.5)

(2) Leti=1, 2. Then it holds dim#®; = dimm,.
(3) It holds the following table:

G/K dimG/K dimm; dimme ¢(G/K)
P%(H) 8 4 3 13
P?(Cay) 16 8 7 25

Proof. (1) and (2) are clear (see Proposition 2.1 of [5]). (3) is obtained by Table 2 and
Table 3 of [5]. O
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3. PROOF OF THEOREM 3

In this section we prove Theorem 3. Here we suppose that dimN = ¢(G/K)—-dim G/K
and that there is a solution ¥ of the Gauss equation (2.2).
Let Y € m. We define a linear map ¥y of m to N by

Uy:mo>Y' +— (YY) eN.

By Ker(¥y)(C m) we denote the kernel of the linear map ¥y. We now show a key

proposition, which plays an important role in the following discussion.
Proposition 5. Let Y € m (Y #0) and let k € K satisfy Ad(k)u € RY . Then it holds
Ker(¥y) = Ad(k)ms,. (3.1)

In particular, it holds Ker(¥,) = ma.

Before proceeding to the proof of Proposition 5, we recall the notion of pseudo-abelian
subspaces of m. Let V be a subspace of m. Then, V is called pseudo-abelian if it satisfies
[V,V] C ¥ (or equivalently [[V,V],u] = 0). By (2.5) we can easily verify that my is

pseudo-abelian. On the contrary, we have

Lemma 6. Let G/K = P2(H) or P?(Cay). Then, any pseudo-abelian subspace V of m

with dim V' > 2 must be contained in ms.

Proof. Let V be a pseudo-abelian subspace of m satisfying V' ¢ my. Then by Lemma 5.4 of
[5], we obtain dim V' < 1+ n(u), where n(p) is the local pseudo-nullity associated with p.
(For the definition of the local pseudo-nullity, see § 3 in [5].) Moreover, we have n(u) =1
if G/K = P?(H) or P?(Cay) (see Table 2 of [5]). Therefore, we get dimV < 2, proving

the lemma. O

We now start the proof of Proposition 5.

Proof of Proposition 5. We first note that dimKer(¥y) > dimmy > 2. In fact, since
dimN =¢(G/K) - dimG/K = dimG/K — dimmgy, we have dimKer(¥y) > dimG/K —
dim N = dimmg > 2 (see Proposition 4 (3)).

In § 1 of [2], by considering the Gauss equation (2.2), we have proved

R(Ker(¥y),Ker(Py))Y = 0. (3.2)
Because of (2.1), the equality (3.2) means

[[Ker(®y),Ker(¥y)],Y] = 0. (3.3)
Applying Ad(k~!) to the both sides of (3.3), we get

[[Ad(k ") Ker(Ty),Ad(k ")Ker(Ty)],u] = 0.
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(Note that Ad(k !)Y can be written as Ad(k )Y = cu for some ¢ € R(c # 0).)
Hence, Ad(k~!)Ker(®y) is a pseudo-abelian subspace of m with dim Ad(k!)Ker(¥y) >
dimmy > 2. Therefore, we have Ad(k !)Ker(¥y) = my (see Lemma 6). This proves
(3.1). O

Utilizing Proposition 5, we will characterize solutions ¥ of the Gauss equation (2.2).
For this purpose we need more informations about the action of the isotropy group Ad(K).
As is well known, any element of m is conjugate to an element of Ru(= a) under the
action of Ad(K). More strongly, under our assumption G/K = P%(H) or P?(Cay), we

have

Proposition 7. (1) Let Yy € a+ mgy satisfy Yy # 0. Then there is an element ky € K
satisfying Ad(ko)u € RYy and Ad(ko)(a+mg) = a+mg. Consequently, Ad(kg)mg coincides
with the orthogonal complement of RY, in a+ my, i.e.,

Ad(ko)mg = {YO €a+my| (YO,YO = O} (3.4)

(2) Let Y1 € my satisfy Y1 # 0. Then there is an element ki € K satisfying Ad(k1)p €
RY; and Ad(k1)(a + mg) = my. Consequently, Ad(k1)ma coincides with the orthogonal

complement of RY7 in mq, i.e.,

Ad(k1 mo — {Yl cmq | (Yl,Y1 = 0} (3.5)

Under the same setting in Proposition 7 (2), we have

Proposition 8. Let Y7 € m; satisfy Y1 # 0. Then there is an element ki € K satisfying

Ad(K)p = \}i{u—i—%}’}, (3.6)
Ad(ki)YQ = % {YQ + m [[Nayl],YQ] } , VYy € mo. (37)

Here |v| denotes the norm of v € m, i.e., |v| = (U,v)1/2.
The proofs of Proposition 7 and Proposition 8 will be given in § 4.
Utilizing Propositions 5, 7 and 8 we first show the following:

Proposition 9. Assume that dimN = ¢(G/K) — dim G/K and that there is a solution
W of the Gauss equation (2.2). Then there exist two vectors A and B € N satisfying

\I’(Y(),Yol) = (YQ,YO')A, VYo, Yo’ € a4+ moy, (3.8)
‘Il(YhYll) = (YlaYII)Ba VYI, Yll € my, (39)
¥(Y1,Ys) = — U(u, [[p.11], Y2)), VY1 € my, VY5 € ma. (3.10)

(1)
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Proof. First we prove
¥ (Y, Yy) =0, VYp, Y] € a+ my satisfying (Y, Yy) = 0. (3.11)

We may assume that Yy, Yj # 0. Then, by Proposition 7 (1), we know that there is an
element kg € K satisfying Ad(ko)u € RY}. Since (YO,Yd) = 0, we have Y € Ad(kg)ma.
Then, by Proposition 5, we know Y € Ker(WPy,). Hence ¥(Yp,Yy) = 0, completing the
proof of (3.11).

Now (3.8) can be proved by (3.11) as follows: Let Yj and Y be two elements of a+mg of
the same length. Since (Y + Yy, Yy —Yy) = 0, we obtain ¥(Yy + Yy, Yy — Y7) = 0. Hence,
we have ¥(Yp,Yy) = ¥(Yy,Yy). This implies that ®(Yp,Ys)/(Y0,Y0) (Yo € a +mg, Yy #
0) takes a constant value A(€ N). Therefore, we have ¥(Y),Y)) = (¥5,Y0)A for any
Yo € a+ mo. Now (3.8) follows immediately from this equality.

In a similar manner, by applying Proposition 7 (2) we can prove (3.9).

Finally, we prove (3.10). Without loss of generality, we may assume that Y7 # 0. Apply
Proposition 8 to this Y3(€ my). Then there is an element &} € K satisfying (3.6) and
(3.7). By (3.1) we have

0 = W(Ad(K} ), Ad(K)Ya)

1 || 1
—twut My vy — [ 1], V).
Pt A e )

Note that [[p,Y1],Y2] € my (see Proposition 4 (1)) and [[p, Y2],Y1] = 2[[p, Y1],Y2] (see
Lemma 5.3 of [5]). Then, we have
(%5, [ Y], Ya]) = 5 (% ([, ¥a] 1)) = —5 (] [, Ya]) =0,

Hence by (3.9) we have W(Y1, [[p, Y1],Y2]) = 0. This together with ®(u,Y2) = 0 proves
(3.10). 0

To calculate the left hand side of the Gauss equation (2.2), we prepare one more propo-

sition, which will be proved in the last section of this paper.

Proposition 10. (1) Let Yy, Yy € a+ mg and Y1 € my. Then:
[Yo, [Yo,Y1]] = —(u, 1) (Yo, Yo) Y1, (3.12)

[YO, [Y07Y()IH _ _4(H1U) (YO’YO)YOI’ if (YO’YE),) =0, (3.13)

0, ZfYO, € RY).

(2) Let Y7, Yll €my and Yy € a+my. Then:

Vi, [V, Y]] = —4( ) ()Y, (14,Y7) =0, (3.14)

0, if Y{ € RY1,
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[V1, [Y1,Y0]] = — (s, 1) (Y1, Y1) Y0. (3.15)

With these preparations, we start the proof of Theorem 3. We first show a series of

lemmas by using the Gauss equation (2.2) and Proposition 9.
Lemma 11. <A,A> = <B,B> = 4(p,,u).
Proof. Take an element Yy € mo satisfying (Yg, Yg) =l.PutX=Z=pandY =W =Y,
into the Gauss equation (2.2). Then, since ¥(u,Ys2) = 0, we have
([, Vo] ], Yo) = (@ (u, p), @ (V2, Y2)).

Since \Il(u,,u)/(u,p) =W (Y2,Y3) = A and ([[M,YQ],M],YQ) = 4(u,u)2, we have <A,A> =
4(u,u).

Next, we prove (B,B) = 4(u,u). Take elements Y, Y/ of my satisfying (V1,Y;) =
(v{,Y/) =1and (v1,Y{) =0. Put X =Z =Y; and Y = W =Y/ into (2.2). Then, since
¥ (Y1,Y]) =0, we have

([[Ylﬁyll]’yl]’yll) = <\II(Y1,Y1),\IJ(Y1',Y1')>.

Since ¥(Y1,Y1) = ¥(Y{,Y]) = B and [[V1,Y{],V1] = 4(u,pn)Y{ (see (3.14)), we have
<B,B> = 4(u,u). 0

Lemma 12. (A, ¥,(m;)) = (B, ¥,(m)) = 0.

Proof. Let Y7 be an arbitrary element of my. Take an element Yo € ms satisfying (YQ, Yg) =
I.Put X =2Z2=Y5,Y =pand W =Y into (2.2). Then, since ¥(u,Y2) = 0, we have

([[¥2, 1], Vo], 1) = (@ (¥2,Y2), @ (p, V1))

Since ¥ (Y2,Y2) = A and [[Ya, p],Y2] = 4(u, )i (see (3.13)), we have (A, ¥(u, 7)) =
4(p, p) (1, Y1) = 0. Since V) is an arbitrary element of my, we have (A, ¥, (m;)) = 0.

Next, let Y7 be an arbitrary element of m;. Take an element Y] € m; satisfying
(Y/,¥)) = 0and (,¥]) =1. Put X = Z = Y/, Y = pand W = ¥ into (2.2).
Then, since ¥(Y7,Y{) = 0, we have

([[Kl,u]ayll]ayl) = <‘I’(Y113Y11)5‘P(U5Y1)>'
Since ¥(Y{,Y{) = B and [[Y{,u],Y{] = (u,p)p (see (3.15)), we have (B, ¥(y,Y7)) =
(,u,u) (M,Yl) = 0. Since Y] is an arbitrary element of m;, we have <B, \Ilu(m1)> =0. 0O
Viewing Proposition 4 (3), we have dimN = dimm; + 1. Since Ker(¥,) Nm; =

my Nm; = 0, we have dim ¥ ,(m;) = dimm; = dimN — 1. Consequently, by Lemma 12

and Lemma 11, we easily have B = + A. More strongly, we can show

Lemma 13. A = B.
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Proof. By the above discussion, it suffices to prove <A,B> > 0. Let Y7 € my satisfy
(Yl,Yl) =1.In(22),weput X =Z =pand Y =W =Y;. Then, we have

([l 1], 1], Y1) = (@ (i, ), ® (Y1, V1)) — (P (1, Y1), © (Y1, 1))
Since W (u, 1) = (1, 1) A, ®(Y1,Y1) = B and [, V1], 4] = (s, 1) *Y1, we have

(1, 1) (A, B) = (1, 1) *(Y1, Y1) + (¥ (1, Y1), ® (11, V1)) > (2, )°
This proves (A,B) > 0. O

Utilizing Lemma 13, we have
Lemma 14. Let Y1, Y{ € my. Then:
(2 (Y1), @ (1, YY) = B(1, 1) (V2. V7). (3.16)

Proof. Put X =Z = p, Y =Y; and W =Y/ into (2.2). Then we have

([m 2], 1], YY) = (@ (s ), B (Y2, Y)) — (2 (1, YY), ¥ (Y2, 1)
Since W(u, 1) = (1, ) A, ¥(V1,Y{) = (V1,Y{)B and A = B, the first term of the right
hand side becomes (¥ (u, ), ¥ (V1,Y{)) = 4(u, 1) (¥1,YY) (see Lemma 11). Therefore,
by [[1, V1], 1] = (u, ) *Y1, we have

(2 (1, Y1), @ (1, Y)) = 4 (1, 1) (1, Y]) = (o) (11, 7)

3(u,1)* (Y1, YY)

2

O

We are now in a position to complete the proof of Theorem 3. Let Y; € my (Y1 # 0)
and Y, € my (Y2 # 0). Note that [¥7,Y3] € & (see Proposition 4 (1)). We also note
that [Yl,Yg] # 0. In fact, if [Yl,Yg} = 0, then the 2-dimensional subspace generated by
Y1 and Y; forms an abelian subspace of m, which contradicts rank(G/K) = 1. Now, set
Y{ = [[Y1,Y2],p]. Then it is clear that Y/ € m; (see Proposition 4 (1)). Moreover, we
have Y{ # 0, because [p,Y]] = ([L,IM)2[Y1,Y2] # 0.

Now, put X =Y1,Y =Ys, Z = pand W =Y/ into (2.2). Since ¥ (Y2, ) = 0, we have

([[YV2, Yol ], YY) = (@ (Vi ), # (%2, V7). (3.1
By (3.10) and (3.16), the right hand side of (3.17) becomes

(T (Y1, p), @ (Y2, ¥])) = —(T (1, Y1), ® (u, [, VY], Yo )))/ (1, 1)
= =3(Y1, [[, Y{], Y2])
= 3([v1, Y2, [w, ¥1])
= 3([[¥1, 2], u], Y1)
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Putting this equality into (3.17), we have ([[Yl,Yg], ,u],Yl' ) = (), which contradicts our
assumption ([[Y1,Y2],u],Y{) = (¥{,Y{) #0.

As we have shown above, starting from the assumption that the Gauss equation (2.2)
admits a solution ¥, we finally arrive at a contradiction. Accordingly, we can conclude that
if G/K = P?(H) or P?(Cay), then the Gauss equation (2.2) does not admit any solution
in case dimN = ¢(G/K) — dimG/K. This completes the proof of Theorem 3. O

4. THE ACTION OF THE ISOTROPY GROUP Ad(K)

In this section we prove Propositions 7, 8 and 10, which are needed in the proof of
Theorem 3.

Lemma 15. Let X; € & (i = 1,2). Then it holds
[, [ X, p]] = =% (1, 1) (X, X . (4.1)
Proof. By (2.5) we have [X;, [X;,]] € a+my;. By the Jacobi identity we have
[1s [Xis [ p]]] = ([ i), (X ] ] + [ X6, [ Xa] 5] = 0,

because [[,u,Xi],,u] € RX;. Therefore, we have [X,- [Xi,,u]] € a. Since a = Ry, there is
a scalar ¢ € R satisfying [Xi [Xi ,u]] = cu. Then we have ¢ = —i? (,u, u) (Xz-, Xi), because

o) = ([ X, [Xio )], 1) = (X, [[Xir 1] 1)) = = (igso 1) (X, X3).

O
By the above lemma, we obtain
Lemma 16. Let X; € ¥; (i = 1,2) satisfy X; # 0. Then it holds
Ad(exp(tX;))pu = cos(i|p|| X;|t)p + sin(ilull Xift) [ X5, 1], Vt € R. (4.2)

il X
Proof. Let n be a non-negative integer. By induction of n, we can easily show
(ad X3)*"u = (=1)" (il ul | X:)*" sy
(ad X;)*" " = (=1)" (il | X ])*" [ X, ]

Consequently, for all t € R we have

Ad X 3 00 t2n 41X o t2n—|—1 41X —_—
(exp(tX;))u = nz_% { 2n)] (ad X;)“"p + m(a i) M}
= > C iy

n=0
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n

T— Eoo ) (o | X |8 [ X, 1]
ilp] | Xs] = (20 +1)! ’
n=0

sin(il ]| Xl¢)

= cos(ilul| Xilt)n + —
Z i1 X

O

With these preparations, we proceed to the proof of Proposition 7. Let Yy € a + mo. If
Yy € a, then we have only to set kg = e, where e is the identity element of K.

Now we assume that Yy ¢ a and write Yy = cu+Ya (c € R, Y2 € mg, Yo # 0). Set Xo =

[Yo, 4]. Then we easily have Xo = [Y5, u] € €& and [Xo, u] = —4(u,u)2Y2. Moreover, we
have |X5| = 2|u|?|Ys|, because

(X2, X2) = (Yo, ], [Y2, 1)) = = ([[¥o, 1], 1], Y2) = 4, 1)” (Y2, Vo).

Putting this X5 into Lemma 16, we have
Ad(exp(tXo))u = cos(4|u||Ya|t)p — Inl sin(4|p|3|Ya|t)Ys, Vt € R.

Take to € R satisfying cos(4|u|3|Yz2|to) = c(|u|/|Yo|) and sin(4|u|3|Y2|te) = —|Y2|/|Yo|. Let
us set kg = exp(tpX2). Then we have ky € K and
Ad(koys = Ad(exp(toXa)s = M (en+¥3) = [H v,
Yo Yol

Thus we get Ad(ko)p € RYp. By (2.5) we immediately have [X2,a+mq] C a+my. Hence,
we have Ad(ko)(a+ mo) = a+ msy. Since Ad(kp) is an orthogonal transformation of m, we
know that Ad(kg)mso coincides with the orthogonal complement of RYj in a + ms. This
finishes the proof of Proposition 7 (1).

To prove Proposition 7 (2), we first show
Lemma 17. Let X1 € &1. Then it holds
(X1, [X1,Y5]] = = (k1) (X1, X1)Y2, VY2 Emo.
Proof. By (4.1), we have
(X0, [X0, p]] = = () (X1, X2 ) o (4.3)

Let Y5 be a non-zero element of ms. Then, as in the proof of Proposition 7 (1), we
know that there is a scalar ¢y € R such that the element ky = exp(tpX2) € K satisfies
Ad(ko)p € RY3, where we set Xy = [YQ,;L] € &,. Then, we have Ad(ky)¢ = &, because
[X2,8] C ¥ (see Proposition 4 (1)).

Now, applying Ad(kg) to the both sides of (4.3), we have

[Ad(ko) X1, [Ad(ko) X1, Ya]]| = — (1, 1) (X1, X1) Yo
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= — (1, 1) (Ad(ko) X1, Ad(ko) X1) Yo.
Writing X instead of Ad(ko)X1 € &, we get the lemma. O
Now we return to the proof of Proposition 7 (2). Set X; = [Yl, ,u]. In the same way as

in the proof of (1), we can easily prove X; € &1, [X1,pu] = —(,u,u)QYl and |Xi| = |u|?|Y1].
Applying Lemma 16 to this X;, we have

Ad(exp(tX1))u = cos(|pf3|¥a|t)u — % sin(|u®| i)Y,  VteR. (4.4)

Let Y2 € mo. By Lemma 17, we have
(ad X1)*"Yy = (=1)"(|ul| X1])*" Y,

(ad X1)2*1Y; = (—1)" (]| X, )2 [ X, Va).
From these equalities, it follows
sin(|u|*|Y1]t)

ha

Let us take t; € R satisfying |u|3|Y1|t1 = —7/2 and set k; = exp(t;X1). Then we can
easily show that k1 € K, Ad(k1)p = (||/|Y1])Y1 € my and

Ad(exp(tX))Ys = cos(|p|?|Y1]t)Ys + [[Y1,4],Y2], VteR. (4.5)

Ad(k1)Ys = [[Y1, 1], Y] (4.6)

P
Hence, we have Ad(k;)u € RY; and Ad(ki)mg C [[Y1,p], mo]. Since [[Y7,u],mo] C my
(see Proposition 4 (1)), we have Ad(k1)(a+msy) C my. Therefore, we have Ad(k1)(a+m2) =
my, because dim(a + mg) = dimm; (see Proposition 4 (3)). Since Ad(k1) is an orthogonal
transformation of m, we know that Ad(k;)mso coincides with the orthogonal complement

of RY] in m;. This completes the proof of Proposition 7 (2). O

Next we prove Proposition 8. Under the same situation as in the proof of Proposi-
tion 7 (2), let us set k] = exp(¢1X1/2). Then by the equalities (4.4) and (4.5) we easily
obtain (3.6) and (3.7). O

Finally, we prove Proposition 10. First we show Proposition 10 (1). If Y € a, then
there is nothing to prove. Hence we may assume that Yy ¢ a. Applying Proposition 7 (1),
we have an element ko € K satisfying Ad(ko)u € RYp and Ad(ko)(a+mz) = a+msy. Then,
it is easily seen that Ad(ko)m; = my. If we write Ad(ko)u = Yy (¢ € R), then we have
2 = (,u, H)/(Yo, Yb). Let Y; be an element of m; (i = 1,2). Apply Ad(ko) to the both sides
of the equality [u, [,u,Yi]] = —42 (u,u)QYi (i = 1,2). Then, since ¢ = (u,,u)/(YO,YO), we
have

[Yo, [Yo, Ad(ko)Yi]] = =% (i, 1) (Yo, Yo) Ad(ko)Yi,  i=1,2.
Now, (3.12) and (3.13) follow immediately from the above equality. (Note the equality (3.4)
and the fact Ad(ko)m; = my.)



12 YOSHIO AGAOKA AND EIJT KANEDA
By applying Proposition 7 (2), Proposition 10 (2) can be also shown in a similar manner.
Details are left to the readers. O

Thus, we have completed the proofs of Propositions 7, 8 and 10.
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