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Abstract

One of substantial problems in dynamical systems is to characterize the
topological types of minimal sets. In this paper, we are concerned with locally
connected minimal sets of surface homeomorphisms. In the case of a home-
omorphism of a closed orientable surface different from the torus, we obtain
that its locally connected minimal set is either a finite set or a finite disjoint
union of simple closed curves. On the other hand, there is a homeomorphism
of the torus with a locally connected minimal set which is neither a finite set
nor a finite disjoint union of simple closed curves nor the whole torus. We will
show that, if such a minimal set exists, then the minimal set is unique and it
satisfies conditions similar to those of the Sierpiński curve.

In 1977, Fathi and Herman ([5]) proposed the following problem: Does there
exist a C∞ diffeomorphism f of a compact manifold such that f admits a minimal
set which is not locally homeomorphic to neither a Euclidean space nor the product
of a Euclidean space and the Cantor set? Certainly, there is no C∞ diffeomorphism
of the circle with such a minimal set. Furthermore, for C∞ diffeomorphisms of 2-
dimensional manifolds, the authors do not know such an example and it is plausible
that there is no C∞ diffeomorphism with such a minimal set. However it is diffi-
cult to prove its non-existence because it is not easy to treat the condition that a
minimal set is not locally homeomorphic to the product of a Euclidean space and
the Cantor set. In this paper, we replace this condition by the local connectivity
of a minimal set and examine the topological types of minimal sets for homeomor-
phisms of closed orientable surfaces. The condition of local connectivity appears in
topological dynamics in a natural way either as a property of the space carrying
the dynamics or as a property of minimal sets which is either assumed, proved or
disproved. For example, the results of [14] show that a wide class of homogeneous
flows admits no locally connected minimal sets, the paper [8] contains an example
of a plane diffeomorphism which has a “pathological” minimal set which is nowhere
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locally connected while Kim [11] has shown that locally connected minimal sets of
flows of compact separable metric spaces reduce to either single points or circles
whenever they have cohomological dimension (with respect to Alexander-Spanier
cohomology with coefficients in a principal ideal domain) ≤ 1.

Our results here begin with the following

Theorem 1. Let f be a homeomorphism of a closed orientable surface Σ different
from the torus T 2. If a minimal set M of f is locally connected, then M is either a
finite set or a finite disjoint union of simple closed curves.

Theorem 2. Let f be a homeomorphism of T 2. If there exists a locally connected
minimal set M which is neither finite, nor a finite disjoint union of simple closed
curves, nor the whole T 2, then M is the unique minimal set of f . This set M

satisfies the following conditions (1) ∼ (5), where {Ui}i=1,2,··· denotes the family of
all the connected components for the complement of M :

(1) each Ui is the interior of an embedded disc (i = 1, 2, · · · ),

(2) {Ui}i=1,2,··· is a null sequence (i. e. the diameter of Ui tends to 0 as i →∞),

(3) Ui intersects Uj at most at one point when i 6= j, and their intersection (if
non-empty) consists of a locally separating point of M,

(4) there is no finite chain Ui1 , Ui2 , · · · , Uin (n > 1) such that Uij ∩ Uij+1
6= ∅

(j = 1, 2, · · · , n− 1) and Ui1 ∩ Uin 6= ∅,

(5) M is connected.

If, instead of conditions (3) and (4) of Theorem 2, we assume that {Ui} consists
of mutually disjoint sets, then M appears to be homeomorphic to the Sierpiński
T 2-set, which is obtained from T 2 by removing the interiors of a null sequence of
mutually disjoint closed discs whose union is dense in T 2 (compare [2]). Thus we
obtain the following:

Corollary 1. Let f be a homeomorphism of T 2. Any locally connected minimal set
without a locally separating point either is finite, or coincides with the whole T 2, or
consists of a finite disjoint union of simple closed curves, or is homeomorphic to the
Sierpiński T 2-set.

The next (and last) result here shows that the assumption of absence of locally
separating points cannot be deleted from Corollary 1.

Theorem 3. There exists a homeomorphism of T 2 having a locally connected min-
imal set which admits a locally separating point and is not a finite disjoint union of
simple closed curves.
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In §1, we will construct a homeomorphism of T 2 satisfying the condition of
Theorem 3 by pinching holes of the Sierpiński T 2-set. Theorems 1 and 2 are proved
in §3 and §4 respectively. In order to establish these theorems, we will show in §2
(Lemma 2) the non-existence of cut points in any connected minimal set.

Note that by results of Chu [3] the construction similar to that of Theorem 3
cannot be performed for flows (or actions of arbitrary connected topological groups).

1 Pinching Sierpiński T 2-sets

Let X be a compact metric space and S be a subset of X. As usually, we denote
by ∂S the frontier of S and by int S its interior. Furthermore, diam S denotes the
diameter of S, i. e. the smallest upper bound for the distances of points in S. A
countable collection {Si}i=1,2,··· of subsets Si is called a null sequence if, for each
ε > 0, only finitely many of the sets Si have diameter greater than ε ([4]). In other
words, limi→∞ diam Si = 0.

A point z of S is called a cut point of S if S r {z} is not connected in S.
Also, a point z of a subset S is called locally separating if there exists a connected
neighbourhood U of z in S such that U r {z} is not connected. Finally, let us recall
that a subset S is locally connected if, for any point z of S and any neighbourhood
U of z in S, one can find a connected neighbourhood of z contained in U .

Let f be a homeomorphism of X. A non-empty subset M of X is called minimal
if M is closed, invariant under f (i. e. f(M) = M) and minimal with respect to
the inclusion among all non-empty closed f -invariant sets. By Zorn Lemma, any
homeomorphism of a compact metric space has a minimal set. When the whole
X is a minimal set, the homeomorphism f is called minimal. Then all its orbits
are dense. Typical examples of minimal homeomorphisms of surfaces are minimal
translations of the torus T 2 defined as follows: Let α and β be irrational numbers
such that α/β is also irrational. A homeomorphism f of T 2 defined by

f(x, y) = (x + α, y + β)

for x, y ∈ R/Z is minimal and called a minimal translation of T 2.
Whyburn ([15]) showed that the Sierpiński curve (called also Sierpiński carpet)

can be characterized as a subset of the sphere S2 obtained by removing the interiors
of a null sequence of mutually disjoint closed discs whose union is dense in S2. His
arguments can be also applied to such subsets of the torus T 2 (and arbitrary closed
manifolds, [2]). Thus we may define the Sierpiński T 2-set as a subset of T 2 obtained
by removing the interiors of a null sequence of mutually disjoint closed discs whose
union is dense in T 2.

Aarts and Oversteegen ([1]) constructed a homeomorphism of the Sierpiński
curve with a dense orbit. They inserted mutually disjoint discs into S2 and extended
a homeomorphism of S2 with a dense orbit to a homeomorphism of S2 with the union
of inserted discs invariant. This construction can be performed also in the case of a
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minimal translation of T 2 (see [2] for a detailed description), so we can obtain in this
way a homeomorphism f of T 2 with a minimal set M homeomorphic to the Sierpiński
T 2-set and such that the family {fn(U)}n∈Z consists of mutually disjoint sets for
any connected component U of T 2

rM. By suitable use of this homeomorphism, we
will construct soon a homeomorphism of T 2 satisfying the conditions of Theorem 3.

Remark 1. A C3−ε diffeomorphism of T 2 with a minimal Sierpiński T 2-set has
been constructed by McSwiggen ([13]) for any ε > 0. To get it, he chooses an Anosov
diffeomorphism of T 3 and modifies in a suitable way the first return map of a global
cross section of the unstable foliation.

Proof of Theorem 3. Let f be the mentioned above homeomorphism of T 2 with a
minimal set M homeomorphic to the Sierpiński T 2-set and such that the sets fn(U),
n ∈ Z, are mutually disjoint for any connected component U of T 2

r M.
Let {Ui}i=1,2,··· denote the family of all the connected components of T 2

rM. Let
us choose a properly embedded (i. e., such that the intersection l∩∂U1 coincides with
the pair of end points of l) arc l contained in U1. Since {Ui}i=1,2,··· is a null-sequence,
diam fn(l) converges to 0 as n → ±∞. Let us define the equivalence relation ∼ by
z1 ∼ z2 (z1, z2 ∈ T 2) whenever either z1 = z2 or both, z1 and z2, are contained in
fn(l) for some n ∈ Z (Figure 1). Let π : T 2 → T 2/ ∼ denote the quotient map.
The family of the closed sets {fn(l)} and the points of T 2 −

⋃
n∈Z

fn(l) forms so
called decomposition with respect to {fn(l)}n∈Z. This decomposition is shrinkable
(in the sense of [4], see also [2]), and therefore T 2/ ∼ is homeomorphic to T 2 by
Theorem 6 in [4], p. 28. (Certainly, π itself is not a homeomorphism but just a
near homeomorphism, i.e. it can be approximated by homeomorphisms in the sense
described in [4].) Let us define a homeomorphism g of T 2/ ∼ by g(π(z)) = πf(z).

g
gf

f

Figure 1: Pinching process

We will show that π(M) is a minimal set of g. Suppose that K is a non-empty
closed g-invariant set contained in π(M). Then π−1(K) ∩ M is closed, f -invariant
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and contained in M. Thus the set π−1(K) ∩ M is either empty or coincides with
M. In the first case, π−1(K) would be contained in

⋃∞
i=1 Ui. Since the sets fn(Ui)

are mutually disjoint, the ω-limit set of a point of π−1(K) would be disjoint from⋃∞
i=1 Ui, a contradiction. Thus π−1(K)∩M coincides with M, and π−1(K) contains

M. Therefore, K = π(π−1(K)) coincides with π(M) and this implies that π(M) is
a minimal set of g indeed.

Next, we show that π(M) is locally connected. Let p be a point of π(M) and U
a neighbourhood of p in T 2. First, suppose that p does not belong to π(

⋃
n∈Z

fn(l)).
Let q denote the unique point such that π(q) = p. Since M is locally connected,
there is a neighbourhood V of q in T 2 such that the intersection V ∩M is connected
and contained in π−1(U) ∩M. By one of the properties of Sierpiński T 2-sets ([15]),
∂V can be further assumed to be disjoint from

⋃
n∈Z

fn(l). Then π−1π(V ) is equal
to V . In fact, if r is a point of π−1π(V ), then π(r) lies in π(V ), and there is a point
z of V such that π(r) = π(z). If r = z, then obviously r lies in V . On the other
hand, if r 6= z, then there is n ∈ Z such that both, r and z, belong to fn(l). Since
fn(l) is disjoint from ∂V , r belongs also to V . Thus the set π−1π(V ) is contained
in V and, consequently, π−1π(V ) = V . Therefore, π(V ) is open in T 2. Moreover,
π(V ) ∩ π(M) coincides with π(V ∩ M) because of the following: if z1 ∈ V and
z2 ∈ M are such that π(z1) = π(z2) and z1 6= z2, then there is n ∈ Z such that both,
z1 and z2, belong to fn(l), and hence z2 lies in V . This implies the required equality
π(V ) ∩ π(M) = π(V ∩ M). Thus π(V ) ∩ π(M) is a connected neighbourhood of
p in π(M), which is contained in U . Next, consider the case when p is a point of
π(

⋃
n∈Z

fn(l)). Let j denote the integer such that p is contained in π(f j(l)), and
q1 and q2 – the end points of f j(l). We can choose neighbourhoods Vi (i = 1, 2)
of qi in T 2 such that Vi ∩M is contained in π−1(U) ∩M, Vi ∩M is connected and
∂Vi ∩ (

⋃
n6=j fn(l)) = ∅. Let W = V1 ∪ V2. Then π(W ) ∩ π(M)(=

⋃2
i=1 π(Vi ∩ M))

is a connected neighbourhood of p in π(M) contained in U by the same reason as
above. This shows that the set π(M) is locally connected indeed.

Finally, we shall show that our set π(M) has a locally separating point. Let z1

and z2 denote the end points of l. For any i = 1, 2, there exists a neighbourhood Vi

of zi in T 2 such that Vi∩M is connected, ∂Vi∩(
⋃

n6=0 fn(l)) = ∅ and V1∩V2∩M = ∅.
Therefore, π(V1∪V2)∩π(M) is a connected neighbourhood of p = π(l) in π(M) (by
the same argument as that in the proof of local connectedness of π(M)). Moreover,
π(V1) r {p} and π(V2) r {p} are disjoint open subsets of π(M). Therefore, π(l)
separates M locally. �

Remark 2. A point which is not contained in π(
⋃

n∈Z
fn(l)) is not locally sepa-

rating. Thus the minimal set π(M) is a locally connected continuum (i. e. a compact
connected set) which is not homogeneous and admits a minimal homeomorphism.
Another one-dimensional continuum which is not homogeneous and admits a mini-
mal homeomorphism was introduced in Theorem 14.24 in [7]; that continuum is not
locally connected (compare also [6]).

Remark 3. In the proof of Theorem 3, we inserted just one properly embedded
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arc into the closure of a connected component of the minimal set. We can modify this
construction easily by inserting a null-sequence of infinitely many pairwise disjoint
properly embedded arcs in there.

Remark 4. Aarts and Oversteegen ([1]) showed that the Sierpiński curve admits
no minimal homeomorphism while Kato ([9]) proved that the Sierpiński curve admits
no expansive homeomorphism (compare [1] again). Our article is in fact strongly
stimulated by these papers.

2 Cut points of minimal sets

In this section, we provide some general properties of minimal sets for homeomor-
phisms of arbitrary compact metric spaces. Although there exists a compact metric
space which is not homogeneous but admits a minimal homeomorphism (see Re-
mark 2 in §1), such minimal sets enjoy ‘homogeneity’ of certain kind.

Throughout the paper, the following simple observation will be used for several
times.

Lemma 1. Let M be a connected minimal set of a homeomorphism f of a compact
metric space. Then there is no non-empty compact proper subset K of M such that
K, f(K), · · · , fn(K) (n = 0) are mutually disjoint and either f n+1(K) is contained
in some fm(K) (0 5 m 5 n) or fn+1(K) contains some fm(K) (0 5 m 5 n).

Proof. First, we consider the case when fn+1(K) is contained in some fm(K) (0 5

m 5 n). If such a compact set K exists, then its ω-limit set ω(K) =
⋂

k=0

⋃
j=k f j(K)

is compact, f -invariant and contains
⋂

j=0 f (n+1−m)j+m(K) (6= ∅). Hence M coin-

cides with ω(K). On the other hand, ω(K) is contained in K ∪ f(K)∪ · · · ∪ fn(K),
which is also contained in M. Thus we have M = K∪f(K)∪· · ·∪f n(K). However,
this contradicts the assumption K 6= M when n = 0 and that of connectedness of
M when n > 0.

One can complete the proof by replacing f with f−1 and fn+1(K) with K in the
case when fn+1(K) contains some fm(K) (0 5 m 5 n) . �

Lemma 2. Let M be a connected minimal set of a homeomorphism f of a compact
metric space X. Then M has no cut points.

Proof. Assume that M has a cut point z. Certainly, each of the points f n(z), n ∈ Z,
cuts M as well. By definition, M r {z} consists of two non-empty sets V1 and V2

such that both of them are open in M. Let Ki (i = 1, 2) denote Vi ∪ {z}. Then
Ki’s (i = 1, 2) are closed in M (just because Vi’s are open). Furthermore, Ki’s are
connected. In fact, if one of them, say K1, were not connected, then there would
exist two disjoint closed subsets A1 and A2 of M such that K1 = A1∪A2 and z ∈ A1.
Then the sets A1 ∪K2 and A2 would be disjoint and closed in M contradicting the
connectedness of M. Thus we have two continua K1 and K2 contained in M and
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such that K1 ∩K2 consists of the single point z, K1 ∪K2 = M, and both, K1 and
K2, contain more than one point.

We claim that either f(K1) ∩ K1 = ∅ or f(K2) ∩ K2 = ∅. Since M contains
at least three points, z is not fixed by f . Hence z lies in the union of the sets
f(K1 r {z}) and f(K2 r {z}), and therefore it does not belong to the intersection
of their complements f(K2) and f(K1). First, suppose that z /∈ f(K2). Then
f(K2)∩K1 and f(K2)∩K2 are disjoint closed sets. Since f(K2) is connected, f(K2)
is contained in either K1 r {z} or K2 r {z}. The second possibility is excluded by
Lemma 1. Thus f(K2) ⊂ K1 r {z}, and hence f(K2) ∩ K2 = ∅. In the same way,
f(K1) ∩ K1 = ∅ if f(K1) does not contain z. Thus one can always find i ∈ {1, 2}
for which f(Ki) ∩Ki = ∅.

Now, using the same argument as above inductively, we will show that all the sets
Ki, f(Ki), f

2(Ki), · · · are mutually disjoint. Suppose that Ki, f(Ki), · · · , fn(Ki)
(n = 1) are mutually disjoint but fn+1(Ki) intersects fm(Ki) for some m (0 5

m 5 n). If fn+1(Ki) does not contain the cut point fm(z), then the connected
set fn+1(Ki) is contained in fm(Ki), what contradicts Lemma 1. Thus the point
fm(z) is contained in fn+1(Ki). Since z is not a periodic point, fm(z) has to
lie in fn+1(Ki r {z}). Let Kj denote the other of our two continua in M (i. e.
Kj = (M r Ki) ∪ {z}). Then fn+1(Kj) does not contain fm(z). Thus the set
fn+1(Kj) is contained either in fm(Ki r {z}) or in fm(Kj r {z}). In the second
case, fn+1(Ki) contains fm(Ki), what contradicts Lemma 1. Thus fn+1(Kj) has to
be contained in fm(Ki r {z}). If m > 0, then fn+1(Kj r {z})∩Ki = ∅ just because
Ki ∩ fm(Ki) = ∅. Thus fn+1(Ki) contains Ki. This contradicts Lemma 1 again.
On the other hand, if m = 0, then fn+1(Kj r {z}) is contained in Ki r {z}. Since
f(Ki) is disjoint from Ki, we obtain that fn+1(Kj r {z})∩ f(Ki) = ∅. This implies
that fn(Kj r {z}) ∩ Ki = ∅, and hence fn(Ki) contains Ki, what contradicts the
assumption. Thus all the sets Ki, f(Ki), f

2(Ki), · · · are mutually disjoint indeed.
(Let us remark that all the family {f k(Ki)}k∈Z consists of mutually disjoint sets just
because f k1(Ki) ∩ f k2(Ki) = f k1(Ki ∩ f k2−k1(Ki)) = ∅ if k2 > k1.)

Since f k(Ki r {z}) (k ∈ Z) are non-empty open sets, the complement of the
union

⋃
k∈Z

fk(Ki r {z}) is f -invariant, closed and different from M, and hence it
has to be empty. In other words, the family A = {f k(Ki r{z})}k∈Z covers M. Since
M is compact, some finite subfamily of A covers M. Since, as was observed before,
the sets f k(Ki − z), k ∈ Z are mutually disjoint, this contradicts the assumption
that M is connected. �

Next we provide some properties of locally connected continua without cut
points. These will be used frequently in the proofs of Theorems 1 and 2 in §3
and §4.

Lemma 3. Let X be a compact metric space and M – a connected and locally
connected closed subset of X without cut points. If there exist a compact subset K
of M and an arc l1 in M such that K contains at least two points and K∩ l1 consists
of a single point z, then there is an arc l2 in M such that one of its end points is z,
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the other end point w of l2 is contained in K r {z}, and l2 r {z, w} is disjoint from
K (Figure 2).

Hereafter, by an arc we mean an injective continuous image of a closed interval.

K

l1 x

l2

z

w

Figure 2:

Proof. Let x denote the end point of l1 different from z. Denote by V1 the path-
connected component of M r {z} containing x. Let V2 = M − (V1 ∪ z). Then
V1 ∩ V2 = ∅ and V1 ∪ V2 = M r {z}, by definition. By Mazurkiewicz-Moore-Menger
Theorem ([12], p. 254), any complete locally connected metric space is locally
arcwise connected, therefore our set M is locally arcwise connected (and arcwise
connected too). Thus V1 and V2 are open in M r {z}. By Lemma 2, the set V2 has
to be empty. Let us choose an arbitrary point p of K, p 6= z. Certainly, p belongs
to V1. Thus we can find an arc l3 joining points p and x and contained in M r {z}.
Denote by β the connected component of l1 r l3 containing z. The end point q of
β, q 6= z, is connected with a point of K by a subarc l4 of l3 which intersects K
only at its end points. Let l2 denote the union of β and l4. The arc l2 satisfies the
conditions of Lemma 3. �

Corollary 2. Let f be a homeomorphism of a compact metric space. If a minimal
set M is connected and locally connected and is not a single point, then M contains
a simple closed curve.

Proof. Let x and y be two distinct points of M, l – an arc joining x and y in M and
z – a point of l different from x and y. Denote by l1 the subarc of l between z and
x, and by K the subarc of l between z and y. There exists an arc l2 in M satisfying
the conditions of Lemma 3. The union l ∪ l2 contains a simple closed curve (which
is obviously contained in M). �
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3 Complements of minimal sets

In order to consider locally connected minimal sets, it is important to examine
topological properties of their complements. In this section, we will prove some
facts (Lemmas 4 and 5) concerning simple closed curves in the boundary of such
complements. These facts will be used to prove Theorem 1 in the final part of this
section.

Lemma 4. Let f be a homeomorphism of a closed orientable surface Σ with a con-
nected and locally connected minimal set M. Let U be a connected component of
Σ − M. If there exists a simple closed curve C contained in the frontier ∂U of U
and satisfying the following conditions (Figure 3):

(1) Σ− C consists of two disjoint connected open sets V1 and V2,

(2) V1 contains U , and

(3) V2 is disjoint from M,

then M coincides with C. (In particular, U = V1.)

C

V2 V1

l1 (⊂ M)

U

Figure 3:

Proof. Assume that M does not coincide with C. Let p be a point of M∩V1. Since
M is connected, there exists an arc γ1 of M joining p and a point q of C such that
γ1 r {q} is disjoint from C. By Lemma 3, one can find a properly embedded arc l1
of V1 contained in M.

We claim that V1 r l1 is connected. In fact, if V1 r l1 consists of two disjoint open
sets W1 and W2, then both C∩W1 and C∩W2 are non-empty arcs with common end
points (just because the end points of l1 cut C into two arcs and V1 is connected).
On the other hand, either W1 or W2, say W1 contains U . Then C is contained in W1

because C ⊂ ∂U . However this contradicts the condition C ∩W2 6= ∅. Thus V1 r l1
is connected indeed.
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Let q and q′ denote the end points of l1 and r be a point of C different from
q and q′. Since M is a minimal set, the orbit starting from q accumulates at r.
Furthermore, q is a branch point of C ∪ l1. Thus the image of a neighbourhood
of q in M by this orbit cannot be contained in C. Therefore, condition (3) of our
Lemma implies that, arbitrarily close to r, there exists a point of M, which lies in
V1 but not in C. Since M is locally connected, there exists a small arc close to r and
contained in M which intersects C only at one of its end points. Applying Lemma 3
we get an arc l2 contained in M and such that l2 intersects C ∪ l1 only at its end
points and one of the end points is contained in C. Then V1 r (l1 ∪ l2) is connected
because, if not, two sides of l2 would be contained in distinct connected components
of V1 r (l1 ∪ l2) one of which contains U , therefore ∂U could not contain C as above.

Proceeding inductively, we obtain infinitely many arcs l1, l2, . . . in M such that
li intersects C ∪ l1 ∪ l2 ∪ · · · ∪ li−1 only at its end points and V1 r (l1 ∪ l2 ∪ · · · ∪ li)
is connected for all i = 1, 2, · · · .

Finally, choose a regular neighbourhood R of C∪(l1∪l2∪· · ·∪li). Let Σ1 = V2 ∪ R
and Σ2 = Σ− Σ1. Then the Euler characteristic χ(Σ2) of Σ2 is smaller than or equal
to 2 (just because Σ2 is connected). The Mayer-Vietoris sequence yields

χ(Σ1) = χ(Σ1 ∪ Σ2)− χ(Σ2) = (2− 2g)− 2 = −2g,

where g is the genus of Σ. On the other hand,

χ(Σ1) ≤ 1− i.

Since this is impossible for a sufficiently large i, M coincides with C. �

In the case when C does not separate Σ, we need some additional consideration
because U may accumulate at C from both sides.

Lemma 5. Let again f be a homeomorphism of a closed orientable surface Σ with a
connected and locally connected minimal set M. Let U be a connected component of
Σ r M. If ∂U coincides with M and there exists a simple closed curve C contained
in ∂U such that Σ r C is connected (Figure 4), then M coincides with C.

Proof. Assume that M does not coincide with C. As before, we will construct by
induction infinitely many arcs l1, l2, · · · in M such that li intersects C ∪ l1∪· · ·∪ li−1

at its end points and Σ r (C ∪ l1 ∪ · · · ∪ li) is connected for i = 1, 2, · · · .
The first step of induction (existence of l1) follows from Lemma 3 as in the proof

of Lemma 4.
Suppose that l1, l2, . . . , ln (n ≥ 1) satisfy the above conditions. Let Sn denote

C ∪ l1 ∪ · · · ∪ ln. Since Sn has finitely many branch points, there is an arc l ⊂ M

such that l intersects Sn only at its end points and one of the end points of l is
contained in C − (l1 ∪ · · · ∪ ln). Suppose that Σ− (Sn ∪ l) is not connected. Let V1

and V2 denote the connected components of Σ − (Sn ∪ l) such that U is contained
in V1. Then ∂U (= M) is contained in V1, and hence V2 is disjoint from M. Since
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U
C

M

Figure 4:

l intersects C at C − (l1 ∪ · · · ∪ ln), the set (C ∩ V2)− (l1 ∪ l2 ∪ · · · ∪ ln) contains a
non-empty open arc α. Then a one-sided neighbourhood of α in V2 is disjoint from
U . Next, let us choose another arc l′ of M such that l′ intersects Sn only at its end
points, one of them being contained in α. Since V2 is disjoint from M, l′ is disjoint
from V2. Suppose also that Σ − (Sn ∪ l′) is not connected. Let V ′

1 and V ′
2 denote

the connected components of Σ − (Sn ∪ l′) such that U is contained in V ′
1 . Then

V ′
2 is disjoint from U as above. By the same argument as for l, C ∩ V ′

2 contains a
non-empty open arc α′ contained in α such that one of the end points of α′ is an end
point of l′. Since l′ is disjoint from V2, both sides of α′ are disjoint from U . Since
this contradicts the assumption that C is contained in ∂U , we obtain that either
Σ r (Sn ∪ l) or Σ r (Sn ∪ l′) is connected so we can put either ln+1 = l (in the first
case) or ln+1 = l′ (in the second one). As promised, induction provides infinitely
many arcs l1, l2, . . . such that each li intersects C ∪ l1 ∪ · · · ∪ li−1 at end points and
all the sets Σ r (C ∪ l1 ∪ · · · li) are connected.

One can complete the proof by the same arguments as those in the final step of
the proof of Lemma 4. �

Proof of Theorem 1. Let N be a connected component of the minimal set M. Cer-
tainly, any connected component of a locally connected space is open. Hence the
complement of

⋃
n∈Z

fn(N) is an f -invariant closed set, and has to be empty. In
other words, {fn(N)}n∈Z is an open covering of M. By the compactness of M, M

coincides with the union of a finite subfamily of {fn(N)}n∈Z. Consequently, there
exists j ∈ Z such that the equality f j(N) = N holds. We assume that j0 is the least
positive integer j satisfying this equality. By the minimality of M, M coincides with⋃j0−1

n=0 fn(N), and N is a minimal set of f j0.
By assumption, the Euler characteristic of Σ is different from zero. Hence, f

has a periodic point (see, for example, [10], p. 330, Exercise 8.6.2), denoted here by
p. Let m denote its period. Then p is a fixed point of fmj0 . Since N is connected
and minimal for f j0, N is – by Theorem 2.28 in [7] – minimal also for fmj0. Thus
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we have only to show that any connected and locally connected minimal set M of
a homeomorphism f of a closed orientable surface Σ with a fixed point p coincides
with either a single point or a simple closed curve.

Suppose that M is not a single point. Then p cannot not belong to M. Let U
be a connected component of Σ r M containing p. Then f(U) coincides with U ,
and hence f(∂U) coincides with ∂U . Since ∂U is a closed invariant set, our minimal
set M coincides with ∂U too. By Corollary 2, M contains a simple closed curve C.
If C does not separate Σ, then M coincides with C by Lemma 5. If C separates
Σ, i. e. Σ r C is the union of two disjoint open sets V1 and V2 (without loss of
generality, we may suppose that U is contained in V1), then V2 is disjoint from M

(just because M coincides with ∂U (⊂ V1)), and again M coincides with C, this
time by Lemma 4. �

4 Homeomorphisms of the torus

Let f be a homeomorphism of T 2 and U – a connected component of the complement
of its minimal set M. If f(U) coincides with U , then ∂U is closed and f -invariant,
therefore ∂U coincides with M. Corollary 2 obtained in the course of proof of
Theorem 1 yields the existence of a simple closed curve contained in ∂U in this case.
In the case when the sets fn(U), n ∈ Z, are mutually disjoint, this argument does
not work. In order to find a simple closed curve in ∂U , we need several preparatory
facts (Lemmas 6, 7 and 8).

Lemma 6. Let f be a homeomorphism of T 2 and let M be a connected and locally
connected minimal set which is neither a single point nor a simple closed curve.
Then, for any connected component U of T 2−M, its saturation {fn(U)}n∈Z consists
of mutually disjoint sets.

Proof. Let us assume on the contrary that the sets {f n(U)}n∈Z are not mutually
distinct. Then there is k 6= 0 such that f k(U) = U . Since M is connected, M is also
a minimal set of f k. Now ∂U is a closed set invariant under f k. Thus ∂U = M. By
the same arguments as that for Theorem 1, M coincides with a simple closed curve.
This contradicts the assumption. �

Lemma 7. Let, as before, f be a homeomorphism of T 2 and let M be a connected
and locally connected minimal set, which is neither a single point nor a simple closed
curve nor the whole T 2. Let {Ui}i=1,2,··· denote the family of all the connected com-
ponents of T 2

r M. Then {Ui}i=1,2,··· is a null sequence.

Proof. First, let us remark that (by Lemma 6) T 2
rM has infinitely many connected

components. Assume that {Uj}j=1,2,··· is not a null sequence. Then there exists ε > 0
such that infinitely many of Uj’s have diameter greater than ε. Denote by {Vi}i=1,2,···

the collection of all such Uj’s. Denote by d the standard metric on T 2 and, for each
i ∈ N, choose points xi and yi of Vi such that d(xi, yi) > ε, and an arc γi in Vi joining
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xi and yi. Let zi be a point of γi such that d(xi, zi) > ε/3 and d(yi, zi) > ε/3. Passing
several times to a subsequence (if necessary), we may assume that {xi}, {yi} and
{zi} converge (as i → ∞) to points x, y and z, respectively (Figure 5). Then we

zixi yi

γi

Vi

Vi+1

xi+1 yi+1

zi+1
x

z
y

Figure 5:

have d(x, z) = ε/3 and d(y, z) = ε/3. Furthermore, z is contained in M because, if
not, z would belong to some connected component Uk of T 2

r M, and – since Uk

contains at most one point of the sequence {zi} – this sequence would not be able to
converge to z. Since {xi} and {yi} converge to x and y respectively, there is N > 0
such that d(xi, x) < ε/6 and d(yi, y) < ε/6 if only i = N . Let

D = {w ; d(w, z) 5 ε/6}.

The points xi and yi do not lie in D when i = N . By the local connectivity of M,
there exists a neighbourhood W of z in T 2 such that W is contained in D and W ∩M

is path-connected. Replacing eventually W by its connected component containing
z we may assume that W itself is connected as well. Let L be an integer greater than
N and such that zi lies in W whenever i = L. For j = L, L + 1, L + 2, the points
xj and yj are not contained in D, and hence we can choose properly embedded arcs
βj contained in D ∩ γj and passing through zj. The arcs βL, βL+1, βL+2 split D into
four closed discs. Among these discs, there are two whose boundaries consist of two
arcs chosen from {βL, βL+1, βL+2} and two others contained in ∂D. Since z does not
belong to the boundaries of these two discs, one of them (denoted by ∆ from now)
does not contain z. Without loss of generality, we can assume that ∂∆ consists of
βL, βL+1 and two arcs contained in ∂D, and furthermore that βL+1 is closer to z
than βL (i. e., z and βL are contained in different components of D r βL+1).

We claim that W ∩M∩ int ∆ 6= ∅. Indeed, since W is connected, there exists an
arc α1 in W joining z and zL. Then α1 intersects βL+1. Thus there exists a subarc
α2 of α1 properly embedded in ∆ and such that one of the end points is contained
in βL while the other one in βL+1. Since βL ⊂ VL and βL+1 ∩ VL = ∅, one can find a
point q of α2 contained in the intersection of ∂VL and int ∆.

Since q ∈ M∩W , q can be connected to z by a path l in M∩W . However, this
is impossible since such an l would intersect βL+1 which is disjoint from M ∩ W .
Therefore, {Ui}i=1,2,··· is a null sequence indeed. �
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Any disc is contained in a Janiszewski space without a cut point, which is home-
omorphic to S2 ([12]). By Theorem 4 in [12], §61,II, we have the following.

Lemma 8. Let X be a free of cut points and locally connected continuum contained
in a disc D and such that ∂D is contained in X. Let U be a connected component
of D r X. Then U is the interior of a disc.

Lemma 9. Let f be a homeomorphism of T 2 and U – a connected component of
the complement of a connected and locally connected minimal set M of f . If M is
neither a single point nor a simple closed curve, then U is the interior of a disc.

Proof. By Corollary 2, M contains a simple closed curve C. By Lemma 3, there is
an arc l1 of T 2 which is contained in M and intersects C only at its end points. Then
the θ-curve (compare [12], p. 328) C ∪ l1 of T 2 belongs to one of the three types
according to the number of the connected components of its complement (which is
always smaller than or equal to three).

First, we consider the case when T 2
r (C ∪ l) is connected. Then the manifold

obtained by cutting T 2 along C ∪ l becomes a closed disc D1 after pasting a circle
to T 2

r (C ∪ l) along the boundary. Since C ∪ l is not the whole M, int D1 contains
a point p of M. Let d1 denote the distance between ∂D1 and p. By the minimality
of M, for any point q of ∂U , there is n ∈ Z such that the distance between f n(q)
and p is smaller than d1/3. Furthermore, by Lemmas 6 and 7, we may assume that
diam fn(U) is also smaller than d1/3. Hence fn(U) is contained in the interior of
D1. Thus fn(U) is a connected component of D1 r M such that fn(U) is disjoint
from ∂D1. By Lemma 8, there is a disc D2 in int D1 such that int D2 = fn(U). Thus
U is the interior of the disc f−n(D2) ⊂ T 2.

Next, we assume that T 2
r (C ∪ l) has three connected components. Then the

manifold obtained by cutting T 2 along C ∪ l consists of two discs Σ1 and Σ2 and a
one-punctured torus Σ3. The discs Σ1 and Σ2 are adjacent by an arc. If the interiors
int Σ1 and int Σ2 are disjoint from M, then the intersection Σ1∩Σ2 contains a closed
arc α “isolated” in M (in the sense, that M is locally homeomorphic to an arc in
a neighbourhood of any point of α different from end points). By the minimality
of M, {fn(α)}n∈Z covers M. Furthermore, by the compactness of M, finitely many
of the sets fn(α), n ∈ Z cover M. Therefore, M is a simple closed curve, which
contradicts the assumption. Thus either int Σ1 or int Σ2 contains a point p of M.
By the same argument as in the case when T 2

r (C ∪ l) is connected, we can show
that there exists n ∈ Z such that fn(U) is contained in either Σ1 or Σ2, so that
fn(U) ∩ (C ∪ l) = ∅, and hence U is the interior of a disc as above.

Finally, we consider the case when T 2
r (C ∪ l) has two connected components.

Then the manifold obtained by cutting T 2 along C ∪ l consists of a disc Σ1 and an
annulus Σ2. Replacing C by ∂Σ1 if necessary, we may assume that C itself bounds
Σ1. If int Σ1 intersects M, then U is the interior of a disc by the same argument
as in the case when T 2 − (C ∪ l) is connected. Thus we may assume that int Σ1

is disjoint from M. The orbit starting from a branch point of C ∪ l accumulates
at a point of C r l, and there is a small arc in Σ2 such that one of the end points
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is contained in C r l. By Lemma 3, there is an arc l′ of M such that l′ intersects
C ∪ l only at its end points, one of them being contained in C r l. If Σ2 r (l ∪ l′) is
connected, then the manifold obtained by cutting Σ2 along l ∪ l′ is a disc adjacent
to Σ1 (Figure 6 (a)). On the other hand, if Σ2 r (l ∪ l′) is not connected, then the

l l′C

Σ1 Σ2

(a)

l

l′

C

Σ1 Σ2

(b)

Figure 6:

manifold obtained by cutting Σ2 along l ∪ l′ is the union of a disc and an annulus
(Figure 6 (b)). Here this disc is also adjacent to the disc Σ1. In this case, U is the
interior of a disc according to the same argument as in the case when T 2

r (C ∪ l)
has three connected components. �

Lemma 10. Let f be a homeomorphism of T 2 and M be a connected and locally
connected minimal set of f . Let {Ui}i=1,2,··· denote the family of the connected com-
ponents for the complement of M. If M is neither a single point nor a simple closed
curve nor the whole T 2, then

(1) Ui intersects Uj at most at one point when i 6= j, and the intersection Ui ∩ Uj

consists of a locally separating point of M (if non-empty);

(2) there is no finite chain Ui1 , Ui2 , . . . , Uin (n > 1) such that Uij ∩ Uij+1
6= ∅

(j = 1, 2, . . . , n− 1) and Ui1 ∩ Uin 6= ∅.

Proof. First, we will show that Ui intersects Uj at most at one point when i 6= j.
Assume that Ui ∩ Uj contains two points p1 and p2. Since Ui and Uj are discs,
there is an arc γ1 (resp., γ2) contained in Ui (resp., Uj) such that both γ1 and γ2

join p1 and p2 and, furthermore, γ1 (resp., γ2) intersects ∂Ui (resp., ∂Uj) only at its
end points. Since Ui ∩ Uj = ∅, the union γ1 ∪ γ2 is a simple closed curve, denoted
hereafter by C. By Lemmas 6 and 7, diam fn(Ui) and diam fn(Uj) converge to 0 as
n → ∞. Thus there is N > 0 such that fN(C) bounds a disc D1. Let zl (l = 1, 2)
be a point of γl different from p1 and p2. Since fN(z1) (resp., fN(z2)) is a point of
fN(Ui) (resp., fN(Uj)), the interior int D1 intersects fN(Ui) and fN(Uj). Therefore,
there is a point q of int D1 which belongs also to M. Let d1 denote the distance
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between ∂D1 and q. Since {Uk}k=1,2,··· is a null sequence and M is a minimal set,
there is an integer L such that

max{diam fL(Ui), diam fL(Uj), d(fL(p1), q)} 5 d1/4.

Then, fL(Ui ∪ Uj) is contained in int D1 just because fL(p1) ∈ fL(Ui) ∩ fL(Uj). In
particular, fL(C) is contained in int D1. The simple closed curve fL(C) bounds a
disc D2 contained in int D1. Now the boundary of fL−N(D1) coincides with ∂D2.
If fL−N(D1) were different from D2, then our surface would be homeomorphic to
the sphere, but this is not the case. Therefore, fL−N(D1) = D2 and, in particular,
fL−N(D1) ⊂ int D1. Thus fL−N(D1 ∩ M) is contained in D1 ∩ M. By Lemma 1,
M is not a minimal set of fL−N . In particular, M is not a minimal set of f , what
contradicts our assumption and shows that Ui intersects Uj at most at one point
(when i 6= j).

Next, we assume that there exists a finite chain Ui1 , Ui2, · · · , Uin (n > 1) such
that Uij ∩ Uij+1

6= ∅ (j = 1, 2, · · · , n− 1) and Ui1 ∩ Uin 6= ∅. Then, joining suitable

arcs properly embedded in Uij , we obtain a simple closed curve C contained in
⋃

j=1,2,··· ,n Uij (Figure 7). By the same argument as above, this is impossible. This
yields our condition (2)

Figure 7:

Finally we will show that the intersection of Ui and Uj consists of a locally
separating point (if non-empty). Let z denote the unique point of Ui ∩ Uj. Choose
an arc α contained in Ui ∪ Uj and such that α ∩ (∂Ui ∪ ∂Uj) = {z}, α ∩ Ui 6= ∅
and α ∩ Uj 6= ∅. Let V be a neighbourhood of z in T 2 which is cut by α into
two pieces. Then the pathwise connected component W of M ∩ V containing z
is a neighbourhood of z such that W r {z} is not connected. Thus, z is locally
separating. �

Proof of Theorem 2. First we will show that M is connected. Assume that this
is not the case. Let N be a connected component of M. By arguments of the
proof of Theorem 1, there is N > 1 such that fN(N) = N and f i(N) 6= N (i =
1, 2, · · · , N − 1), and furthermore, N is a minimal set of fN . Let g = fN . Denote
by V the connected component of T 2

rN containing f(N). Since fN+1(N) = f(N),
both, g(V ) and V , contain f(N). But, g(V ) is also a connected component of T 2

rN.
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Thus g(V ) = V and hence g(∂V ) = ∂V . Therefore, ∂V is a g-invariant closed set
contained in N. Since N is a minimal set of g, ∂V coincides with N. By Lemma 9,
∂V is a simple closed curve. Since (as in proof of Theorem 1) M has finite number
of connected components, this contradicts our assumptions on the structure of our
minimal set M. Therefore, M is connected indeed.

By Lemmas 7, 9 and 10, the conditions (1), (2), (3) and (4) of Theorem 2 are
satisfied. The remaining problem is the uniqueness of minimal sets. Suppose that
there exists another minimal set M

′. Then one of its connected components has
to be contained in some connected component U of the complement of M. By
Lemma 6, all the sets of {fn(U)}n∈Z are mutually disjoint. Then the orbit starting
from a point of the intersection M

′ ∩ U never approaches to this point again, a
contradiction. �

Remark 5. A connected component of
⋃∞

i=1 Ui can be invariant under f . More-
over, it is possible that the union

⋃∞

i=1 Ui is just connected. Such an example was
communicated to the authors by Takashi Tsuboi: Let g be a minimal translation of
T 2. We choose a point x and a (straight) segment l joining x and g(x). Inserting
mutually disjoint discs along the orbit {gn(x)}n∈Z as in §1, we obtain a homeo-
morphism h of T 2 whose minimal set M is homeomorphic to the Sierpiński T 2-set.
Then the arcs corresponding to {gn(l)}n∈Z are contained in M and are mutually
disjoint. Thus the decomposition with respect to these arcs is shrinkable. By the
same argument as in the proof of Theorem 3, we can collapse these arcs and obtain
a homeomorphism f such that

⋃∞

i=1 Ui is connected and invariant (where, as before,
Ui’s are connected components of the complement of the minimal set).
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