数理情報科学セミナー 2023


9 月 28 日 16:30-17:30 (※対面でのみ行います.通常と曜日が違います.)
石井 敦 (筑波大学)

Quandle twisted Alexander invariants with cohomologous Alexander pairs

ねじれAlexander不変量は群表現の与えられた(または群彩色された)絡み目の不変量であって, 特に自明な群表現を用いた場合のねじれAlexander不変量はAlexander多項式に対応します.群表現の代わりにカンドル表現を用いて定義されるAlexander型不変量が, カンドルねじれAlexander不変量です.カンドルねじれAlexander不変量は,カンドルの線形拡大に付随するAlexanderペアを指定するごとに得られる不変量です. 本講演では,カンドルねじれAlexander不変量を紹介した後,cohomologousなAlexander pairを指定して得られるカンドルねじれAlexander不変量が同値な不変量 であることを示します.本研究は大城佳奈子氏(上智大学)との共同研究です.


8 月 2 日 16:30-17:30 (※対面でのみ行います.)
山田 裕史 (岡山大学)

シューア函数とプリュッカー関係式

広島大学の大学院生時代に脇本實先生(当時助教授)からヴィラソロ代数という無限次元リー環を教わった.同じ頃,数理研の佐藤幹夫先生のKP理論に魅せられて, シューア函数に関連する組合せ論に夢中になった.ヴィラソロ代数のフォック表現とシューア函数,KP方程式が結びつくという現象に気がついて以来, ずっとこの辺りをぐるぐる回りながら数学をやってきた.カッツムーディリー環とか対称群,ヘッケ環や量子群などいろいろ面白いネタを漁ってきたが, 数年前に若い共同研究者に刺激されて再びヴィラソロ代数でちょっとした事実を示すことができた.談話会では昔話に絡めて幾つかの小さな発見についてお話ししたい.


数理情報科学セミナー