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Abstract

Our aim in this paper is to deal with continuity properties for weakly
monotone Sobolev functions of variable exponent.

1 Introduction

This paper deals with continuity properties of weakly monotone Sobolev functions.
We begin with the definition of weakly monotone functions. Let D be an open set
in the n-dimensional Euclidean space Rn (n ≥ 2). A function u in the Sobolev
space W 1,q

loc (D) is said to be weakly monotone in D (in the sense of Manfredi [12]),
if for every relatively compact subdomain G of D and for every pair of constants
k ≤ K such that

(k − u)+ and (u − K)+ ∈ W 1,q
0 (G),

we have
k ≤ u(x) ≤ K for a.e. x ∈ G,

where v+(x) = max{v(x), 0}. If a weakly monotone Sobolev function is continuous,
then it is monotone in the sense of Lebesgue [11]. For monotone functions, see
Koskela-Manfredi-Villamor [9], Manfredi-Villamor [13, 14], the second author [17],
Villamor-Li [20] and Vuorinen [21, 22].

Following Kováčik and Rákosńik [10], we consider a positive continuous function
p(·) : D → (1,∞) and the Sobolev space W 1,p(·)(D) of all functions u whose first
(weak) derivatives belong to Lp(·)(D). In this paper we consider the function p(·)
satisfying

|p(x) − p(y)| ≤ a log(log(1/|x − y|))
log(1/|x − y|) +

b

log(1/|x − y|)
whenever |x − y| < 1/2, for a ≥ 0 and b ≥ 0.
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Our first aim is to discuss the continuity for weakly monotone functions u in
the Sobolev space W 1,p(·)(D). For the properties of Sobolev spaces of variable
exponent, we refer the reader to the papers by Diening [2], Edmunds-Rákosńik [3],

Kováčik-Rákosńik [10] and R
◦
užička [19].

We know that if p(x) ≥ n for all x ∈ D, then all weakly monotone functions
in W 1,p(·)(D) are continuous in D (see Manfredi [12] and Manfredi-Villamor [13]).
We show that u is continuous at x0 ∈ D when p(·) is of the form

p(x) = n − a log(log(1/|x − x0|))
log(1/|x − x0|) (p(x0) = n)

for x ∈ B(x0, r0), where 0 < r0 < 1/2 and a ≤ 1.
Our second aim is to prove the existence of boundary limits of weakly monotone

Sobolev functions on the unit ball B, when p(·) satisfies the inequality∣∣∣∣p(x) −
{

n +
a log(e + log(1/ρ(x)))

log(e/ρ(x))

}∣∣∣∣ ≤ b

log(e/ρ(x))

for a ≥ 0 and b ≥ 0, where ρ(x) = 1 − |x| denotes the distance of x from the
boundary ∂B. Continuity of Sobolev functions has been obtained by Harjulehto-
Hästö [7] and the authors [4]. Of course, our results extend the non-variable case
studied in [17].

2 Weakly monotone Sobolev functions

Throughout this paper, let C denote various constants independent of the variables
in question.

We use the notation B(x, r) to denote the open ball centered at x of radius r.
If u is a weakly monotone Sobolev function on D and q > n − 1, then

|u(x) − u(x′)|q ≤ Crq−n

∫
A(y,2r)

|∇u(z)|qdz (1)

for almost every x, x′ ∈ B(y, r), whenever B(y, 2r) ⊂ D (see [12, Theorem 1]) and
A(y, 2r) = B(y, 2r) \ B(y, r). If we define u∗(x) by

u∗(x) = lim sup
r→0

1

|B(x, r)|
∫

B(x,r)

u(y)dy,

then we see that u∗ satisfies (1) for all x, x′ ∈ B(y, r). Note here that u∗ is a
quasicontinuous representative of u and it is locally bounded on D. Hereafter, we
identify u with u∗.

Example 2.1. Let 1 < q < ∞ and A : Rn×Rn → Rn be a mapping satisfying
the following assumptions for some measurable function α and constant β such that
0 < α(x) ≤ β < ∞ for a.e. x ∈ Rn:
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(i) the mapping x �→ A(x, ξ) is measurable for all ξ ∈ Rn,

(ii) the mapping ξ �→ A(x, ξ) is continuous for a.e. x ∈ Rn,

(iii) A(x, ξ) · ξ ≥ α(x)|ξ|q for all ξ ∈ Rn and a.e. x ∈ Rn,

(iv) |A(x, ξ)| ≤ β|ξ|q−1 for all ξ ∈ Rn and a.e. x ∈ Rn.

Then a weak solution of the equation

−divA(x,∇u(x)) = 0 (2)

in an open set D is weakly monotone (see [9, Lemma 2.7]). In the special case
α(x) ≥ α > 0, according to the well-known book by Heinonen-Kilpeläinen-Martio
[8], a weak solution of (2) is monotone in the sense of Lebesgue.

3 Continuity of weakly monotone functions

For an open set G in Rn, define the Lp(·)(G) norm by

‖f‖p(·) = ‖f‖p(·),G = inf

{
λ > 0 :

∫
G

∣∣∣∣f(y)

λ

∣∣∣∣
p(y)

dy ≤ 1

}

and denote by Lp(·)(G) the space of all measurable functions f on G with ‖f‖p(·) <
∞. We denote by W 1,p(·)(G) the space of all functions u ∈ Lp(·)(G) whose first
(weak) derivatives belong to Lp(·)(G). We define the conjugate exponent function
p′(·) to satisfy 1/p(x) + 1/p′(x) = 1.

Let B(x, r) be the open ball centered at x and radius r > 0, and let B = B(0, 1).
Consider a positive continuous function p(·) on [0, 1] such that∣∣∣∣p(r) −

{
n − a log(e + log(1/r))

log(e/r)

}∣∣∣∣ ≤ b

log(e/r)
(p(0) = n)

for a ≥ 0 and b ≥ 0.
Our aim in this section is to prove that if a ≤ 1, then functions in W 1,p(·)(B)

are continuous at the origin, in spite of the fact that infx∈B p(x) < n. For this
purpose, we prepare the following result.

Lemma 3.1. Let p(x) = p(|x|) for x ∈ B. Let u be a weakly monotone Sobolev
function in W 1,p(·)(B). If a < 1, then

|u(x) − u(0)|n ≤ C(log(1/r))a−1

∫
B(0,R)

|∇u(y)|p(y)dy,

and if a = 1, then

|u(x) − u(0)|n ≤ C(log(log(1/r)))−1

∫
B(0,R)

|∇u(y)|p(y)dy
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whenever |x| < r < 1/4, where R =
√

r when a < 1 and R = e−
√

log(1/r) when
a = 1.

Proof. Let u be a weakly monotone Sobolev function in W 1,p(·)(B). Set
p1(r) = p(r)/q, where n− 1 < q < n. Then, as in (1), we apply Sobolev’s theorem
on the sphere S(0, r) to establish

|u(x) − u(0)|q ≤ Crq−(n−1)

∫
S(0,r)

|∇u(y)|qdS(y)

for |x| < r. By Hölder’s inequality we have

|u(x) − u(0)|q

≤ Crq−(n−1)

(∫
S(0,r)

dS(y)

)1/p′1(r) (∫
S(0,r)

|∇u(y)|qp1(r)dS(y)

)1/p1(r)

≤ Crq−(n−1)/p1(r)

(∫
S(0,r)

|∇u(y)|p(r)dS(y)

)1/p1(r)

,

which yields

|u(x) − u(0)|p(r) ≤ Cr(log(1/r))a

∫
S(0,r)

|∇u(y)|p(y)dS(y)

for |x| < r. Since u is bounded on B(0, 1/2), we see that

|u(x) − u(0)|n ≤ Cr(log(1/r))a

∫
S(0,r)

|∇u(y)|p(y)dS(y).

Hence, by dividing both sides by r(log(1/r))a and integrating them on the interval
(r, R), we obtain

|u(x) − u(0)|n ≤ C(log(1/r))a−1

∫
B(0,R)

|∇u(y)|p(y)dy when a < 1

and

|u(x) − u(0)|n ≤ C(log(log(1/r)))−1

∫
B(0,R)

|∇u(y)|p(y)dy when a = 1

whenever |x| < r < 1/4. �

Lemma 3.1 yields the following result.

Theorem 3.2. Let u be a weakly monotone Sobolev function in W 1,p(·)(B). If
a < 1, then u is continuous at the origin and it satisfies

lim
x→0

(log(1/|x|))(1−a)/n|u(x) − u(0)| = 0;
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if a = 1, then
lim
x→0

(log(log(1/|x|)))1/n|u(x) − u(0)| = 0.

Remark 3.3. Consider the function

u(x) =
xn

|x|
for x = (x1, ..., xn). If we define u(0) = 0, then u is a weakly monotone quasi-
continuous representative in Rn. Note that u is not continuous at 0 and if a > 1,
then ∫

B

|∇u(x)|p(x)dx < ∞;

if a ≤ 1, then ∫
B

|∇u(x)|p(x)dx = ∞.

This shows that continuity result in Theorem 3.2 is good as to the size of a.

Remark 3.4. Let ϕ be a nonnegative continuous function on the interval [0, r0]
such that

(i) ϕ(0) = 0 ;

(ii) ϕ′(t) ≥ 0 for 0 < t < r0 ;

(iii) ϕ′′(t) ≤ 0 for 0 < t < r0 .

Then note that
ϕ(s + t) ≤ ϕ(s) + ϕ(t) (3)

for s, t ≥ 0 and s + t ≤ r0. Consider

ϕ(r) =
log(log(1/r))

log(1/r)
,

1

log(1/r)

for 0 < r ≤ r0; set ϕ(r) = ϕ(r0) for r > r0. Then we can find r0 > 0 such that ϕ
satisfies (i) - (iii) on [0, r0], and hence (3) holds for all s ≥ 0 and t ≥ 0. Hence if
we set

p(r) = n +
a log(e + log(1/r))

log(e/r)
+

b

log(e/r)
,

then we can find c > 0 and r0 > 0 such that

|p(s) − p(t)| ≤ |a| log(log(1/|s − t|))
log(1/|s − t|) +

c

log(1/|s − t|)
whenever |s − t| < r0.
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4 0-Hölder continuity of continuous Sobolev func-

tions

Consider a positive continuous function p(·) on the unit ball B such that p(x) > p0

and ∣∣∣∣p(x) −
{

p0 +
a log(e + log(1/ρ(x)))

log(e/ρ(x))

}∣∣∣∣ ≤ b

log(e/ρ(x))

for all x ∈ B, where 1 < p0 < ∞ and ρ(x) = 1− |x| denotes the distance of x from
the boundary ∂B. Then note that

p′(x) − p′(0) = − p(x) − p(0)

(p(x) − 1)(p(0) − 1)

= −p(x) − p(0)

(p(0) − 1)2
+

(p(x) − p(0))2

(p(x) − 1)(p(0) − 1)2
.

Hence we have the following result.

Lemma 4.1. There exist positive constants r0 and C such that

|p′(x) − {p′0 − ω(ρ(x))}| ≤ C/ log(1/ρ(x))

for x ∈ B, where p′0 = p0/(p0 − 1) and ω(t) = (a/(p0 − 1)2) log(log(1/t))/ log(1/t)
for 0 < r ≤ r0 < 1/e; set ω(t) = ω(r0) for r > r0.

In view of Sobolev’s theorem, we see that all functions u ∈ W 1,p(·)(B) are
continuous in B. In what follows we discuss the 0-Hölder continuity of u. Before
doing so, we need the following result.

Lemma 4.2. Let p0 = n and let u be a continuous Sobolev function in
W 1,p(·)(B) such that ‖|∇u|‖p(·) ≤ 1. If a > n − 1, then∫

B∩B(x,r)

|x − y|1−n|∇u(y)| ≤ C(log(1/r))−A,

where A = (a − n + 1)/n.

Proof. Let f(y) = |∇u(y)| for y ∈ B and f = 0 outside B. For 0 < µ < 1,
we have ∫

B(x,r)

|x − y|1−nf(y)dy

≤ µ

{∫
B(x,r)

(|x − y|1−n/µ)p′(y)dy +

∫
B(x,r)

f(y)p(y)dy

}

≤ µ

{
µ−n/(n−1)

∫
B(x,r)

|x − y|(1−n)p′(y)dy + 1

}
.
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Applying polar coordinates, we have∫
B(x,r)

|x − y|(1−n)p′(y)dy ≤ C

∫
{t:|t−ρ(x)|<r}

|ρ(x) − t|(1−n)(n′−ω0(t))+n−1dt

= C

∫
{t:|t−ρ(x)|<r}

|ρ(x) − t|(n−1)ω0(t)−1dt,

where ω0(t) = ω(t) − C/ log(1/t). If r ≤ ρ(x)/2 and |ρ(x) − t| < ρ(x)/2, then

ω0(t) ≥ ω(r) − C/ log(1/r),

so that ∫
{t:|t−ρ(x)|<r}

|ρ(x) − t|(n−1)ω0(t)−1dt ≤ C(log(1/r))1−a/(n−1).

If r > ρ(x)/2, then |t| < 3|ρ(x) − t| when |ρ(x) − t| ≥ ρ(x)/2. Hence, in this case,
we obtain ∫

{t:|t−ρ(x)|<r}
|ρ(x) − t|(n−1)ω0(t)−1dt

≤
∫
{t:|t−ρ(x)|<ρ(x)/2}

|ρ(x) − t|(n−1)ω0(t)−1dt + C

∫
{t:|t|<3r}

|t|(n−1)ω0(t)−1dt

≤ C(log(1/r))1−a/(n−1),

so that ∫
B(x,r)

|x − y|(1−n)p′(y)dy ≤ C(log(1/r))1−a/(n−1).

Consequently it follows that∫
B(x,r)

|x − y|1−nf(y)dy ≤ µ
(
Cµ−n/(n−1)(log(1/r))1−a/(n−1) + 1

)
.

Now, letting µ−n/(n−1)(log(1/r))1−a/(n−1) = 1, we establish∫
B(x,r)

|x − y|1−nf(y)dy ≤ C(log(1/r))(n−1−a)/n.

�

Now we are ready to show the 0-Hölder continuity of Sobolev functions in
W 1,p(·)(B) .

Theorem 4.3. Let p0 = n and u be a continuous Sobolev function in W 1,p(·)(B)
such that ‖|∇u|‖p(·) ≤ 1. If a > n − 1, then

|u(x) − u(y)| ≤ C(log(1/|x − y|))−A
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whenever x, y ∈ B and |x − y| < 1/2.

Proof. Let x, y ∈ B and r = |x − y| ≤ ρ(x). Then we see from Lemma 4.2
that

|u(x) − u(y)| ≤ C

∫
B(x,r)

|x − z|1−n|∇u(z)|dz ≤ C(log(1/r))−A.

If r = |x − y| < 1/2, ρ(x) < r and ρ(y) < r, then we take xr = (1 − r)x/|x| and
yr = (1 − r)y/|y| to establish

|u(x) − u(y)| ≤ |u(x) − u(xr)| + |u(xr) − u(yr)| + |u(yr) − u(y)|
≤ C(log(1/r))−A,

which proves the assertion. �

Remark 4.4. Let p(·) be as above, and consider the function

u(x) = [log(e + log(1/|x − ξ|))]δ,
where ξ ∈ ∂B and 0 < δ < (n − 1)/n. We see readily that u(ξ) = ∞ and it is
monotone in B. Further, if a ≤ n − 1, then∫

B

|∇u(x)|p(x)dx < ∞,

so that Theorem 4.3 does not hold for a ≤ n − 1.

5 Tangential boundary limits of weakly mono-

tone Sobolev functions

Let G be a bounded open set in Rn. Consider a positive continuous function p(·)
on Rn satisfying

(p1) p−(G) = infG p(x) > 1 and p+(G) = supG p(x) < ∞;

(p2) |p(x) − p(y)| ≤ a log(log(1/|x − y|))
log(1/|x − y|) +

b

log(1/|x − y|)
whenever |x − y| < 1/e, where a ≥ 0 and b ≥ 0.

For E ⊂ G, we define the relative p(·)-capacity by

Cp(·)(E; G) = inf

∫
G

f(y)p(y)dy,

where the infimum is taken over all nonnegative functions f ∈ Lp(·)(G) such that∫
G

|x − y|1−nf(y)dy ≥ 1 for every x ∈ E.
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From now on we collect fundamental properties for our capacity (see Meyers
[15], Adams-Hedberg [1] and the authors [6]).

Lemma 5.1. For E ⊂ G, Cp(·)(E; G) = 0 if and only if there exists a nonnega-
tive function f ∈ Lp(·)(G) such that∫

G

|x − y|1−nf(y)dy = ∞ for every x ∈ E.

For 0 < r < 1/2, set

h(r; x) =

⎧⎪⎪⎨
⎪⎪⎩

rn−p(x)(log(1/r))a when p(x) < n,
(log(1/r))a−(n−1) when p(x) = n and a < n − 1,
(log(log(1/r)))−a when p(x) = n and a = n − 1,
1 when p(x) = n and a > n − 1.

Lemma 5.2. Suppose p(x0) ≤ n and a ≤ n − 1. If B(x0, r) ⊂ G and 0 < r <
1/2, then

Cα,p(·)(B(x0, r); G) ≤ Ch(r; x0).

Lemma 5.3. If f is a nonnegative measurable function on G with ‖f‖p(·) < ∞,
then

lim
r→0+

h(r; x)−1

∫
B(x,r)

f(y)p(y)dy = 0

holds for all x except in a set E ⊂ G with Cp(·)(E; G) = 0.

Let p(·) be as in Section 4; that is, we assume that p(x) > n and∣∣∣∣p(x) −
{

n +
a log(e + log(1/ρ(x)))

log(e/ρ(x))

}∣∣∣∣ ≤ b

log(e/ρ(x))
(4)

for x ∈ B, where a ≥ 0 and b > 0. Then p1(x) ≤ p(x) ≤ p2(x) for x ∈ B, where

p1(x) = n +
a log(e + log(1/ρ(x)))

log(e/ρ(x))
− b

log(e/ρ(x))
,

p2(x) = n +
a log(e + log(1/ρ(x)))

log(e/ρ(x))
+

b

log(e/ρ(x))
.

For simplicity, set
p(x) = p1(x) = p2(x) = n

outside B. Then we can find b′ > b such that for i = 1, 2

|pi(x) − pi(y)| ≤ a log(e + log(1/|x − y|))
log(e/|x − y|) +

b

log(e/|x − y|)
≤ a log(log(1/|x − y|))

log(1/|x − y|) +
b′

log(1/|x − y|)
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whenever |x − y| is small enough, say |x − y| < r0 < 1/e.
Since G has finite measure, we find a constant K > 0 such that

Cα,p(·)(E; G) ≤ KCα,p2(·)(E; G) (5)

whenever E ⊂ G. Hence, in view of Lemma 5.2, we obtain

Cα,p(·)(B(x0, r); 2B) ≤ Ch(r; x0) (6)

for x0 ∈ ∂B, where 2B = B(0, 2).

Corollary 5.4. If f is a nonnegative measurable function on 2B with
‖f‖p(·) < ∞, then

lim
r→0+

h(r; x)−1

∫
B(x,r)

f(y)p(y)dy = 0

holds for all x ∈ ∂B except in a set E ⊂ ∂B with Cp(·)(E; 2B) = 0.

If u is a weakly monotone function in W 1,p(·)(B), then, since p(x) > n for x ∈ B
by our assumption, we see that u is continuous in B and hence monotone in B in
the sense of Lebesgue. We now show the existence of tangential boundary limits
of monotone Sobolev functions u in B when a ≤ n − 1.

For ξ ∈ ∂B, γ ≥ 1 and c > 0, set

Tγ(ξ, c) = {x ∈ B : |x − ξ|γ < cρ(x)}.

Theorem 5.5. Let p(·) be a positive continuous function on 2B such that
p(x) ≥ n for x ∈ 2B and∣∣∣∣p(x) −

{
n +

a log(e + log(1/ρ(x)))

log(e/ρ(x))

}∣∣∣∣ ≤ b

log(e/ρ(x))

for x ∈ B, where a ≥ 0 and b > 0. If u is a monotone function in W 1,p(·)(B) (in
the sense of Lebesgue), then there exists a set E ⊂ ∂B such that

(i) Cp(·)(E; B(0, 2)) = 0 ;

(ii) if ξ ∈ ∂B \ E, then u(x) has a finite limit as x → ξ along the sets Tγ(ξ, c).

If a > n−1, then the above function u has a continuous extension on B = B∪∂B
in view of Theorem 4.3, and hence the exceptional set E can be taken as the empty
set.

To prove Theorem 5.5, we may assume that

p(x) = n +
a log(e + log(e/ρ(x)))

log(e/ρ(x))
− b

log(e/ρ(x))

for x ∈ B.
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We need the following two results. The first one follows from inequality (1) (see
e.g. [9] and [5]).

Lemma 5.6. Let u be a monotone Sobolev function in W 1,p(·)(B). If ξ ∈ ∂B,
x ∈ B and n − 1 < q < n, then

|u(x) − u(x̃)|q ≤ C(log(2r/ρ(x)))q−1

∫
E(x)

|∇u(y)|qρ(y)q−ndy,

where x̃ = (1 − r)ξ, r = |ξ − x| and E(x) = ∪y∈xx̃B(y, ρ(y)/2) with xx̃ = {tx +
(1 − t)x̃ : 0 < t < 1}.

Lemma 5.7. Let u be a monotone Sobolev function in W 1,p(·)(B). Let ξ ∈ ∂B
and a ≥ 0. Suppose

(log(1/r))n−1−a

∫
B∩B(ξ,2r)

|∇u(y)|p(y)dy ≤ 1.

If x ∈ Tγ(ξ, c), x̃ = (1 − r)ξ and r = |ξ − x|, then

|u(x) − u(x̃)|n ≤ C(log(1/r))n−1−a

∫
B∩B(ξ,2r)

|∇u(y)|p(y)dy.

Proof. First note that

ρ(y) ≥ C(ρ(x) + |x − y|) for y ∈ E(x).

Take q such that n − 1 < q < n; when a > 0, assume further that a > (n − q)/q.
Set p1(x) = p(x)/q. Then we have for µ > 0∫

E(x)

|∇u(y)|qρ(y)q−ndy ≤ µ

{∫
E(x)

(ρ(y)(q−n)/µ)p′1(y)dy +

∫
E(x)

|∇u(y)|qp1(y)dy

}

≤ µ

{∫
E(x)

(ρ(y)(q−n)/µ)p′1(y)dy + F

}
,

where F =
∫

E(x)
|∇u(y)|p(y)dy. Note from Lemma 4.1 that

|p′1(y) − {n/(n − q) − ω(ρ(y))}| ≤ C/ log(1/ρ(y))

for y ∈ E(x), where ω(t) = (aq2/(n − q)2) log(log(1/t))/ log(1/t). Hence

n/(n − q) − ω1(ρ(y)) ≤ p′1(y) ≤ n/(n − q) − ω2(ρ(y)),

where ω1(t) = ω(t) + C/ log(1/t) and ω2(t) = ω(t) − C/ log(1/t). Suppose

(log(1/r))−1+aq/(n−q)F > 1.
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Since p′1(y) ≤ n/(n − q), we have for 0 < µ < 1,∫
E(x)

(ρ(y)(q−n)/µ)p′1(y)dy

≤ Cµ−n/(n−q)

∫
E(x)

(ρ(x) + |x − y|)(q−n)(n/(n−q)−ω2(ρ(y)))dy

≤ Cµ−n/(n−q)

∫ 2r

0

(ρ(x) + t)−n(log(1/(ρ(x) + t)))−aq/(n−q)tn−1dt

≤ Cµ−n/(n−q)(log(1/r))1−aq/(n−q)

whenever x ∈ Tγ(ξ, c). Considering

µ−n/(n−q)(log(1/r))1−aq/(n−q) = F,

we obtain∫
E(x)

|∇u(y)|qρ(y)q−ndy ≤ C
{
(log(1/r))−1+aq/(n−q)F

}−(n−q)/n
F

= C

{
(log(1/r))(n−q)/q−a

∫
E(x)

|∇u(y)|p(y)dy

}q/n

.

Consequently it follows from Lemma 5.6 that

|u(x) − u(x̃)|n ≤ C(log(1/r))n−1−a

∫
B∩B(ξ,2r)

|∇u(y)|p(y)dy

whenever x ∈ Tγ(ξ, c).
Next consider the case when (log(1/r))−1+aq/(n−q)F ≤ 1. Set p+ = supB∩B(ξ,2r) p(y)

and and p+
1 = supB∩B(ξ,2r) p1(y) = p+/q. For µ > 1, we apply the above consider-

ations to obtain∫
E(x)

(ρ(y)(q−n)/µ)p′1(y)dy ≤ Cµ−(p+
1 )′

∫
E(x)

(ρ(x) + |x − y|)(q−n)(n/(n−q)−ω2(ρ(y)))dy

≤ Cµ−(p+
1 )′(log(1/r))1−aq/(n−q).

If we take µ satisfying µ−(p+
1 )′(log(1/r))1−aq/(n−q) = F , then we have

∫
E(x)

|∇u(y)|qρ(y)q−ndy ≤ C

{
(log(1/r))(n−q)/q−a

∫
E(x)

|∇u(y)|p(y)dy

}1/p+
1

.

Since (log(1/r))ω(r) is bounded above for small r > 0, Lemma 5.6 yields

|u(x) − u(x̃)|p+ ≤ C(log(1/r))n−1−a

∫
B∩B(ξ,2r)

|∇u(y)|p(y)dy

whenever x ∈ Tγ(ξ, c), which proves the required assertion. �
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Proof of Theorem 5.5. Consider E = E1 ∪ E2, where

E1 = {ξ ∈ ∂B :

∫
B

|ξ − y|1−n|∇u(y)|dy = ∞}

and

E2 = {ξ ∈ ∂B : lim sup
r→0+

(log(1/r))n−1−a

∫
B(ξ,r)

|∇u(y)|p(y)dy > 0}.

We see from Lemma 5.1 and Corollary 5.4 that E = E1 ∪ E2 is of Cp(·)-capacity
zero. If ξ �∈ E1, then we can find a line L along which u has a finite limit �. In
view of inequality (1), we see that u has a radial limit � at ξ, that is, u(rξ) tends
to � as r → 1 − 0. Now we insist from Lemma 5.7 that if ξ ∈ ∂B \ E, then u(x)
tends to � as x tends to ξ along the sets Tγ(ξ, c). �

Remark 5.8. If a > n− 1, then we do not need the monotonicity in Theorem
5.5, because of Theorem 4.3.

Finally we show the nontangential limit result for weakly monotone Sobolev
functions. Recall that a quasicontinuous representative is locally bounded.

Theorem 5.9. Let p(·) be a positive continuous function on B such that∣∣∣∣p(x) −
{

p0 +
a log(e + log(1/ρ(x)))

log(e/ρ(x))

}∣∣∣∣ ≤ b

log(e/ρ(x))
,

where −∞ < a < ∞, b ≥ 0 and n−1 < p0 ≤ n. If u is a weakly monotone function
in W 1,p(·)(B) (in the sense of Manfredi), then there exists a set E ⊂ ∂B such that

(i) Cp(·)(E; B(0, 2)) = 0 ;

(ii) if ξ ∈ ∂B \ E, then u(x) has a finite limit as x → ξ along the sets T1(ξ, c).

To prove this, we need the following lemma instead of Lemma 5.7, which can
be proved by use of (1) with q = p− = infz∈B(x,ρ(x)/2) p(z).

Lemma 5.10. Let p and u be as in Theorem 5.9. If y ∈ B(x, r) with r = ρ(x)/4,
then

|u(x) − u(y)|p− ≤ Crp0−n(log(1/r))−a

(
rn +

∫
B(x,2r)

|∇u(z)|p(z)dz

)
.
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užička, Electrorheological fluids : modeling and Mathematical theory,

Lecture Notes in Math. 1748, Springer, 2000.

[20] E. Villamor and B. Q. Li, Analytic properties of monotone Sobolev functions,
Complex Variables Theory Appl. 46 (2001), 255-263.

[21] M. Vuorinen, On functions with a finite or locally bounded Dirichlet integral,
Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 177-193.

[22] M. Vuorinen, Conformal geometry and quasiregular mappings, Lectures Notes
in Math. 1319, Springer, 1988.

Department of Mathematics
Daido Institute of Technology

Nagoya 457-8530, Japan
E-mail : futamura@daido-it.ac.jp

and
The Division of Mathematical and Information Sciences

Faculty of Integrated Arts and Sciences
Hiroshima University

Higashi-Hiroshima 739-8521, Japan
E-mail : mizuta@mis.hiroshima-u.ac.jp

15


