RIGIDITY OF THE CANONICAL ISOMETRIC IMBEDDING OF THE QUATERNION PROJECTIVE PLANE $P^2(\mathbf{H})$

YOSHIO AGAOKA AND EIJI KANEDA

ABSTRACT. In this paper, we investigate isometric immersions of $P^2(\mathbf{H})$ into \mathbf{R}^{14} and prove that the canonical isometric imbedding \mathbf{f}_0 of $P^2(\mathbf{H})$ into \mathbf{R}^{14} , which is defined in Kobayashi [11], is rigid in the following strongest sense: Any isometric immersion \mathbf{f}_1 of a connected open set $U(\subset P^2(\mathbf{H}))$ into \mathbf{R}^{14} coincides with \mathbf{f}_0 up to a euclidean transformation of \mathbf{R}^{14} , i.e., there is a euclidean transformation a of \mathbf{R}^{14} satisfying $\mathbf{f}_1 = a\mathbf{f}_0$ on U.

1. Introduction

In our previous paper [8], we proved the rigidity of the canonical isometric imbedding of the Cayley projective plane $P^2(\mathbf{Cay})$. The purpose of this paper is to investigate a similar problem for (local) isometric immersions of the quaternion projective plane $P^2(\mathbf{H})$. As we have proved in [7], any open set of the quaternion projective plane $P^2(\mathbf{H})$ cannot be isometrically immersed into \mathbf{R}^{13} . On the other hand, there is an isometric immersion \mathbf{f}_0 of $P^2(\mathbf{H})$ into the euclidean space \mathbf{R}^{14} , which is called the canonical isometric imbedding of $P^2(\mathbf{H})$ (see Kobayashi [11]). Therefore, it follows that \mathbf{R}^{14} is the least dimensional euclidean space into which $P^2(\mathbf{H})$ can be (locally) isometrically immersed.

In the present paper, we will show that the canonical isometric imbedding f_0 is rigid in the following strongest sense:

Theorem 1. Let \mathbf{f}_0 be the canonical isometric imbedding of $P^2(\mathbf{H})$ into the euclidean space \mathbf{R}^{14} . Then, for any isometric immersion \mathbf{f}_1 defined on a connected open set U of $P^2(\mathbf{H})$ into \mathbf{R}^{14} , there exists a euclidean transformation a of \mathbf{R}^{14} satisfying $\mathbf{f}_1 = a\mathbf{f}_0$ on U.

The proof of this theorem will be given by solving the Gauss equation associated with the isometric imbeddings (immersions) of $P^2(\mathbf{H})$ into \mathbf{R}^{14} in the same line of [8] (see

Date: April 8, 2004.

 $^{2000\ \}textit{Mathematics Subject Classification}.\ 17B20,\ 53B25,\ 53C24,\ 53C35.$

Key words and phrases. Curvature invariant, isometric immersion, quaternion projective plane, rigidity, root space decomposition.

Theorem 7). We use the same notations and terminology as those of the previous papers [6], [7] and [8].

2. The quaternion projective plane $P^2(\mathbf{H})$

In this section we review the structure of the quaternion projective plane $P^2(\mathbf{H})$ and prepare several formulas concerning the bracket operation.

As is well-known, $P^2(\mathbf{H})$ can be represented by $P^2(\mathbf{H}) = G/K$, where G = Sp(3) and $K = Sp(2) \times Sp(1)$. Let g (resp. k) be the Lie algebra of G (resp. K) and let g = k + m be the canonical decomposition of g associated with the symmetric pair (G, K). We denote by (,) the inner product of g given by the (-1)-multiple of the Killing form of g. As usual, we can identify m with the tangent space $T_o(G/K)$ at the origin $o = \{K\}$. We assume that the G-invariant Riemannian metric g of G/K satisfies

$$g_o(X,Y) = (X,Y), \quad X,Y \in \mathbf{m}.$$

Then, it is well-known that at the origin o the Riemannian curvature tensor R of type (1,3) is given by

$$R_o(X,Y)Z = -[[X,Y],Z], \quad \forall X,Y,Z \in \mathbf{m}.$$

We now take a maximal abelian subspace a of m and fix it in the following discussions. We note that since $\operatorname{rank}(P^2(\boldsymbol{H})) = 1$, we have $\dim a = 1$.

For each element $\lambda \in a$ we define two subspaces $k(\lambda)$ ($\subset k$) and $m(\lambda)$ ($\subset m$) by

$$\begin{aligned} \mathbf{k}(\lambda) &= \Big\{ X \in \mathbf{k} \mid \big[H, \big[H, X \big] \big] = - \big(\lambda, H \big)^2 X, & \forall H \in \mathbf{a} \Big\}, \\ \mathbf{m}(\lambda) &= \Big\{ Y \in \mathbf{m} \mid \big[H, \big[H, Y \big] \big] = - \big(\lambda, H \big)^2 Y, & \forall H \in \mathbf{a} \Big\}. \end{aligned}$$

Let Σ be the set of all non-zero restricted roots. (An element $\lambda \in a$ is called a restricted root if $m(\lambda) \neq 0$.) As is known, there is a restricted root μ such that $\Sigma = \{\pm \mu, \pm 2\mu\}$. We take and fix such a restricted root μ . For each integer i we set $k_i = k(|i|\mu)$, $m_i = m(|i|\mu)$ ($|i| \leq 2$), $k_i = m_i = 0$ (|i| > 2). Then, we have $m_0 = a = \mathbf{R}\mu$ and

$$k = k_0 + k_1 + k_2$$
 (orthogonal direct sum),
 $m = m_0 + m_1 + m_2$ (orthogonal direct sum).

The dimensions of the factors are given by $\dim k_0 = 6$, $\dim k_1 = \dim m_1 = 4$ and $\dim k_2 = \dim m_2 = 3$ (precisely, see [7]).

We now show several formulas concerning the bracket operation of g. By the definition of the subspaces k_i and m_i we easily have

$$[k_i, k_j] \subset k_{i+j} + k_{i-j}, \quad [m_i, m_j] \subset k_{i+j} + k_{i-j}, \quad [k_i, m_j] \subset m_{i+j} + m_{i-j}.$$
 (2.1)

Moreover, we have

Proposition 2. Let $Y_0, Y_0' \in a + m_2, Y_1, Y_1' \in m_1$. Then:

$$[Y_i, [Y_i, Y_j']] = -(1 + 3\delta_{ij}) (\mu, \mu) \{ (Y_i, Y_i) Y_j' - (Y_i, Y_j') Y_i \}, \quad (i, j = 0, 1),$$
(2.2)

$$[Y_i, [Y_i', Y_j]] + [Y_i', [Y_i, Y_j]] = -2(\mu, \mu)(Y_i, Y_i')Y_j, \quad (i, j = 0, 1, i \neq j),$$
(2.3)

$$[Y_i, [Y_i, X_1]] = -(\mu, \mu)(Y_i, Y_i)X_1, \quad \forall X_1 \in k_1 \quad (i = 0, 1),$$
 (2.4)

where δ_{ij} denotes the Kronecker delta.

Proof. We first prove (2.2). Assume that i=j and $Y_i \neq 0$. Set $Y_i'' = Y_i' - (Y_i', Y_i) / (Y_i, Y_i) \cdot Y_i$. Then, we know that $(Y_i, Y_i'') = 0$ and that $Y_i'' \in a + m_2$ if i = 0 and $Y_i'' \in m_1$ if i = 1. Hence, by Proposition 10 of [7], we have $[Y_i, [Y_i, Y_i'']] = -4(\mu, \mu)(Y_i, Y_i)Y_i''$. Therefore, we can easily obtain (2.2) in the case i = j. In the case $i \neq j$, (2.2) directly follows from Proposition 10 of [7].

We next prove (2.3). Since $i \neq j$, it follows that $(Y_i, Y_j) = (Y'_i, Y_j) = 0$. Hence, by (2.2) we have $[Y_i + Y'_i, [Y_i + Y'_i, Y_j]] = -(\mu, \mu)(Y_i + Y'_i, Y_i + Y'_i)Y_j$. This, together with $[Y_i, [Y_i, Y_j]] = -(\mu, \mu)(Y_i, Y_i)Y_j$ and $[Y'_i, [Y'_i, Y_j]] = -(\mu, \mu)(Y'_i, Y'_i)Y_j$, proves (2.3).

We finally prove (2.4). We note that $[Y_1, a + m_2] = k_1$ holds for any $Y_1 \in m_1 \neq 0$. In fact, it is easy to see $[Y_1, a + m_2] \subset k_1$ (see (2.1)). Moreover, the map $a + m_2 \ni Y_0' \longmapsto [Y_1, Y_0'] \in k_1$ is bijective, because $[Y_1, Y_0'] \neq 0$ if $Y_0' \in a + m_2 (Y_0' \neq 0)$ (recall that rank $(P^2(\mathbf{H})) = 1$) and because $\dim(a + m_2) = \dim k_1$. Let $X_1 \in k_1$. Then, by $[Y_1, a + m_2] = k_1$ we can take an element $Y_0' \in a + m_2$ such that $[Y_1, Y_0'] = X_1$. Now, applying ad Y_1 to the equality $[Y_1, [Y_1, Y_0']] = -(\mu, \mu)(Y_1, Y_1)Y_0'$ (see (2.2)), we have $[Y_1, [Y_1, X_1]] = -(\mu, \mu)(Y_1, Y_1)X_1$, proving (2.4) for the case i = 1. Similarly, we can prove (2.4) for the case i = 0.

Let $Y_0, Y_0' \in a + m_2$. Define a linear mapping $L(Y_0, Y_0')$ of m_1 to m by

$$L(Y_0, Y_0')Y_1 = [Y_0, [Y_0', Y_1]], \qquad Y_1 \in m_1.$$

Then, we have

Proposition 3. Let $Y_0, Y'_0 \in a + m_2$. Then:

- (1) $L(Y_0, Y_0')$ $\mathbf{m}_1 \subset \mathbf{m}_1$. The transpose of $L(Y_0, Y_0')$ with respect to (,) is given by $L(Y_0', Y_0)$, i.e., ${}^tL(Y_0, Y_0') = L(Y_0', Y_0)$.
- (2) Let $\mathbf{1}_{-1}$ be the identity map of m_1 . Then:
 - $(2a) L(Y_0, Y_0') + L(Y_0', Y_0) = -2(\mu, \mu) (Y_0, Y_0') \mathbf{1}_{1};$
 - (2b) $L(Y_0, Y_0') \cdot L(Y_0', Y_0) = (\mu, \mu)^2 (Y_0, Y_0) (Y_0', Y_0') \mathbf{1}_{-1}$.

Proof. The assertion (1) is clear from (2.1) and the adg-invariance of (,). Let $Y_1 \in m_1$. Since $[Y_0, Y_1] \in k_1$, we have $[Y_0', [Y_0', [Y_0, Y_1]]] = -(\mu, \mu)(Y_0', Y_0')[Y_0, Y_1]$ (see (2.4)).

Hence, by applying ad Y_0 to this equality, we easily have (2b). The equality (2a) directly follows from (2.3).

Here, we recall the notion of pseudo-abelian subspace of m. Let Q be a subspace of m. Q is called pseudo-abelian if it satisfies $[Q,Q] \subset k_0$ (see [6]).

Proposition 4. (1) Any subspace Q of m_2 is pseudo-abelian.

(2) Let Q be a pseudo-abelian subspace satisfying $Q \not\subset m_2$. Then, dim $Q \leq 2$.

Accordingly, the inequality dim $Q \leq 3$ holds for any pseudo-abelian subspace Q, and the equality holds when and only when $Q = m_2$.

Proof. Since $[m_2, m_2] \subset k_0$ (see (2.1)), it follows that any subspace of m_2 is pseudo-abelian. On the contrary, we already proved in Lemma 5.4 of [6] that for a pseudo-abelian subspace Q with $Q \not\subset m_2$ it holds dim $Q \leq 1 + n(\mu)$, where $n(\mu)$ means the local pseudo-nullity of the restricted root μ . (For the definition of the local pseudo-nullity, see §3 of [6].) In the case $G/K = P^2(\mathbf{H})$, we have $n(\mu) = 1$ (see Theorem 3.2 and Table 3 of [6]). Hence, we have dim $Q \leq 2$.

For later use, we obtain the normal form of a 2-dimensional pseudo-abelian subspace Q with $Q \not\subset \mathbf{m}_2$.

Proposition 5. Let ξ_1 and η_1 be elements of m_1 satisfying $(\xi_1, \xi_1) = 2(\mu, \mu)$, $\eta_1 \neq 0$ and $(\xi_1, \eta_1) = 0$. Then, the 2-dimensional subspace $Q(\subset m)$ defined by

$$Q = \mathbf{R}(\mu + \xi_1) + \mathbf{R}\left(\eta_1 + \frac{1}{4(\mu, \mu)^2} [\mu, [\xi_1, \eta_1]]\right)$$
(2.5)

is pseudo-abelian and $Q \not\subset m_2$.

Conversely, if Q is a pseudo-abelian subspace of m with $Q \not\subset m_2$ and dim Q=2, then Q can be written in the form (2.5) by utilizing suitable elements ξ_1 and $\eta_1 \in m_1$ satisfying $(\xi_1, \xi_1) = 2(\mu, \mu)$, $\eta_1 \neq 0$ and $(\xi_1, \eta_1) = 0$.

Proof. Let ξ_1 and η_1 be elements of m_1 satisfying $(\xi_1, \xi_1) = 2(\mu, \mu)$, $\eta_1 \neq 0$ and $(\xi_1, \eta_1) = 0$. Then, the subspace Q defined by (2.5) satisfies $Q \not\subset m_2$ and dim Q = 2. Set $\eta_2 = (1/4(\mu, \mu)^2)[\mu, [\xi_1, \eta_1]]$. Then, it is easily verified that $\eta_2 \in m_2$. We now show that Q is pseudo-abelian. By (2.3) and $(\xi_1, \eta_1) = 0$, we have $[\xi_1, [\eta_1, \mu]] = -[\eta_1, [\xi_1, \mu]]$. Hence, by the Jacobi identity we have

$$\left[\mu,\left[\xi_1,\eta_1\right]\right]=\left[\left[\mu,\xi_1\right],\eta_1\right]+\left[\xi_1,\left[\mu,\eta_1\right]\right]=-2\left[\xi_1,\left[\eta_1,\mu\right]\right].$$

Consequently, we have $\eta_2 = -(1/2(\mu,\mu)^2)[\xi_1, [\eta_1, \mu]]$. Note that $[\eta_1, \mu] \in k_1$. Then, by the formula (2.4) and the assumption $(\xi_1, \xi_1) = 2(\mu, \mu)$ we have

$$\left[\xi_{1},\eta_{2}
ight]=-rac{1}{2\left(\mu,\mu
ight)^{2}}\left[\xi_{1},\left[\xi_{1},\left[\eta_{1},\mu
ight]
ight]
ight]=rac{\left(\xi_{1},\xi_{1}
ight)}{2\left(\mu,\mu
ight)}\left[\eta_{1},\mu
ight]=-\left[\mu,\eta_{1}
ight].$$

Moreover, since $[\mu, \eta_2] + [\xi_1, \eta_1] \in k$ and since

$$[\mu, [\mu, \eta_2] + [\xi_1, \eta_1]] = -4(\mu, \mu)^2 \eta_2 + [\mu, [\xi_1, \eta_1]] = 0,$$

it follows that $[\mu, \eta_2] + [\xi_1, \eta_1] \in k_0$. (Note that an element $X \in k$ belongs to k_0 if and only if $[\mu, X] = 0$.) By these relations we have

$$[\mu + \xi_1, \eta_1 + \eta_2] = [\mu, \eta_1] + [\xi_1, \eta_2] + [\mu, \eta_2] + [\xi_1, \eta_1] = 0 + [\mu, \eta_2] + [\xi_1, \eta_1] \in k_0.$$

Since $Q = \mathbf{R}(\mu + \xi_1) + \mathbf{R}(\eta_1 + \eta_2)$, this implies that Q is a pseudo-abelian subspace.

We next prove the converse. Let Q be a pseudo-abelian subspace with $Q \not\subset m_2$ and $\dim Q = 2$. Then, viewing the proof of Lemma 5.4 of [6], we know that $Q \cap m_2 = 0$ and $\dim(Q \cap (m_1 + m_2)) \leq n(\mu) = 1$. Consequently, we have $Q \not\subset m_1 + m_2$, because $\dim Q = 2$. Therefore, there is a basis $\{\xi, \eta\}$ of Q written in the form $\xi = \mu + \xi_1 + \xi_2$, $\eta = \eta_1 + \eta_2$, where $\xi_1, \eta_1 \in m_1, \xi_2, \eta_2 \in m_2$. Here, we note that $\eta_1 \neq 0$, because $Q \cap m_2 = 0$. Subtracting a constant multiple of η from ξ if necessary, we may assume that $(\xi_1, \eta_1) = 0$. Since

$$[\xi, \eta] = [\mu + \xi_2, \eta_1] + [\xi_1, \eta_2] + [\mu + \xi_2, \eta_2] + [\xi_1, \eta_1] \in \mathbf{k}_0$$

and since $[\mu + \xi_2, \eta_1] + [\xi_1, \eta_2] \in k_1$, $[\mu + \xi_2, \eta_2] + [\xi_1, \eta_1] \in k_0 + k_2$ and $[\xi_2, \eta_2] \in k_0$, it follows that

$$[\mu + \xi_2, \eta_1] + [\xi_1, \eta_2] = 0, \tag{2.6}$$

$$[\mu, \eta_2] + [\xi_1, \eta_1] \in k_0.$$
 (2.7)

Applying ad μ to (2.7), we have $\eta_2 = (1/4(\mu, \mu)^2)[\mu, [\xi_1, \eta_1]]$. By this equality and the assumption $(\xi_1, \eta_1) = 0$, we can deduce $[\xi_1, \eta_2] = ((\xi_1, \xi_1)/2(\mu, \mu))[\eta_1, \mu]$ (see the arguments stated above). Putting this into (2.6), we have

$$\left[\left(1-rac{\left(\xi_{1},\xi_{1}\right)}{2\left(\mu,\mu\right)}\right)\mu+\xi_{2},\eta_{1}\right]=0.$$

Since $\eta_1 \neq 0$ and rank $(P^2(\boldsymbol{H})) = 1$, we have $(1 - (\xi_1, \xi_1)/2(\mu, \mu)) \mu + \xi_2 = 0$. This proves $(\xi_1, \xi_1) = 2(\mu, \mu)$ and $\xi_2 = 0$, completing the proof of the converse.

3. The Gauss equation

Let N be a euclidean vector space, i.e., N is a vector space over R endowed with an inner product \langle , \rangle . Let $S^2\mathbf{m}^*\otimes N$ be the space of N-valued symmetric bilinear forms on \mathbf{m} . We call the following equation on $\Psi\in S^2\mathbf{m}^*\otimes N$ the Gauss equation associated with N:

$$([[X,Y],Z],W) = \langle \Psi(X,Z), \Psi(Y,W) \rangle - \langle \Psi(X,W), \Psi(Y,Z) \rangle, \tag{3.1}$$

where $X, Y, Z, W \in m$. We denote by $\mathcal{G}(P^2(H), N)$ the set of all solutions of (3.1), which is called the *Gaussian variety* associated with N.

As in the case of $P^2(Cay)$ (Theorem 11 of [8]), we can prove the following

Theorem 6. Let N be a euclidean vector space with dim N = 6. Let $\Psi \in S^2 \mathbf{m}^* \otimes N$ be a solution of the Gauss equation (3.1), i.e., $\Psi \in \mathcal{G}(P^2(H), N)$. Then:

- (1) There are linearly independent vectors \mathbf{A} and $\mathbf{B} \in \mathbf{N}$ satisfying
 - (i) $\langle \mathbf{A}, \mathbf{A} \rangle = \langle \mathbf{B}, \mathbf{B} \rangle = 4(\mu, \mu)$ and $\langle \mathbf{A}, \mathbf{B} \rangle = 2(\mu, \mu)$;
 - (ii) $\Psi(Y_0, Y_0') = (Y_0, Y_0') \mathbf{A}, \forall Y_0, Y_0' \in \mathbf{a} + \mathbf{m}_2;$
 - (iii) $\Psi(Y_1, Y_1') = (Y_1, Y_1')\mathbf{B}, \forall Y_1, Y_1' \in \mathbf{m}_1;$
 - (iv) $\langle \mathbf{A}, \mathbf{\Psi}(\mu, \mathbf{m}_1) \rangle = \langle \mathbf{B}, \mathbf{\Psi}(\mu, \mathbf{m}_1) \rangle = 0.$
- (2) $\Psi(Y_1, Y_2) = -\frac{1}{(\mu, \mu)^2} \Psi(\mu, L(\mu, Y_2) Y_1), \quad \forall Y_1 \in m_1, \, \forall Y_2 \in m_2.$

(3)
$$\langle \Psi(\mu, Y_1), \Psi(\mu, Y_1') \rangle = (\mu, \mu)^2 (Y_1, Y_1'), \quad \forall Y_1, Y_1' \in m_1.$$

Let O(N) be the orthogonal transformation group of N. We define an action of O(N) on $S^2 m^* \otimes N$ by

$$(h\Psi)(X,Y) = h(\Psi(X,Y)),$$

where $\Psi \in S^2 \text{m}^* \otimes \mathbf{N}$, $h \in O(\mathbf{N})$. It is easily seen that $\mathcal{G}(P^2(\mathbf{H}), \mathbf{N})$ is invariant under this action, i.e., $h \mathcal{G}(P^2(\mathbf{H}), \mathbf{N}) = \mathcal{G}(P^2(\mathbf{H}), \mathbf{N})$ for any $h \in O(\mathbf{N})$. We say that the Gaussian variety $\mathcal{G}(P^2(\mathbf{H}), \mathbf{N})$ is EOS if $\mathcal{G}(P^2(\mathbf{H}), \mathbf{N}) \neq \emptyset$ and if $\mathcal{G}(P^2(\mathbf{H}), \mathbf{N})$ is consisting of essentially one solution, i.e., for any solutions Ψ and $\Psi' \in \mathcal{G}(P^2(\mathbf{H}), \mathbf{N})$, there is an element $h \in O(\mathbf{N})$ satisfying $\Psi' = h\Psi$ (see [8]).

By Theorem 6 we can show

Theorem 7. Let **N** be a euclidean vector space with dim $\mathbf{N} = 6$. Then, $\mathcal{G}(P^2(\mathbf{H}), \mathbf{N})$ is EOS.

Proof. The proof of this theorem is quite similar to that of Theorem 10 in [8].

First we note that $\mathcal{G}(P^2(\boldsymbol{H}), \boldsymbol{N}) \neq \emptyset$, because the second fundamental form of the canonical isometric imbedding \boldsymbol{f}_0 at the origin $o \in P^2(\boldsymbol{H})$ satisfies (3.1).

Let $\{E_i \ (1 \leq i \leq 4)\}$ be an orthonormal basis of m_1 . (Note that $\dim m_1 = 4$.) Let $\Psi \in \mathcal{G}(P^2(\boldsymbol{H}), \boldsymbol{N})$ and let \mathbf{A}, \mathbf{B} be the vectors of \boldsymbol{N} stated in Theorem 6. We define vectors $\{\mathbf{F}_i \ (1 \leq i \leq 6)\}$ of \boldsymbol{N} by setting $\mathbf{F}_i = \Psi(\mu, E_i)/(\mu, \mu) \ (1 \leq i \leq 4), \ \mathbf{F}_5 = (\mathbf{A} + \mathbf{B})/2\sqrt{3}|\mu|$ and $\mathbf{F}_6 = (\mathbf{A} - \mathbf{B})/2|\mu|$. By Theorem 6 we can show that $\{\mathbf{F}_i \ (1 \leq i \leq 6)\}$ forms an orthonormal basis of \boldsymbol{N} . Now let $\boldsymbol{\Psi}'$ be another element of $\mathcal{G}(P^2(\boldsymbol{H}), \boldsymbol{N})$. Let \mathbf{A}' and \mathbf{B}' be the vectors stated in Theorem 6 for $\boldsymbol{\Psi}'$. As in the case of $\boldsymbol{\Psi}$ we can also define an orthonormal basis $\{\mathbf{F}'_i \ (1 \leq i \leq 6)\}$ of \boldsymbol{N} . Then, there is an element $h \in O(6)$ satisfying $\mathbf{F}'_i = h\mathbf{F}_i \ (1 \leq i \leq 6)$. Here, we note that $\mathbf{A}' = h\mathbf{A}$, $\mathbf{B}' = h\mathbf{B}$ and $\boldsymbol{\Psi}'(\mu, E_i) = h\boldsymbol{\Psi}(\mu, E_i) \ (1 \leq i \leq 4)$. Set $\boldsymbol{\Phi} = \boldsymbol{\Psi}' - h\boldsymbol{\Psi} \in S^2\mathbf{m}^* \otimes \boldsymbol{N}$. Then, by Theorem 6 (1) we have

$$\Phi(a + m_2, a + m_2) = \Phi(m_1, m_1) = \Phi(a, m_1) = 0.$$

By Theorem 6 (2) and by the fact $L(\mu, m_2)m_1 \subset m_1$ we have

$$\mathbf{\Phi}(\mathbf{m}_2, \mathbf{m}_1) \subset \mathbf{\Phi}(\mu, L(\mu, \mathbf{m}_2)\mathbf{m}_1) \subset \mathbf{\Phi}(\mathbf{a}, \mathbf{m}_1) = 0,$$

which proves $\Phi(\mathbf{m}_2, \mathbf{m}_1) = 0$. Therefore, we have $\Phi = 0$, i.e., $\Psi' = h\Psi$, completing the proof of Theorem 7.

By Theorem 7 we know that $P^2(\mathbf{H})$ is formally rigid in codimension 6 in the sense of Agaoka–Kaneda [8]. Therefore, Theorem 1 can be obtained by Theorem 7 and the rigidity theorem (Theorem 5 of [8]).

Before proceeding to the proof of Theorem 6, we make several preparations.

Let N be a euclidean vector space. In what follows we assume dim N = 6. Let $S^2 m^* \otimes N$ be the space of N-valued symmetric bilinear forms on m. Let $\Psi \in S^2 m^* \otimes N$ and $Y \in m$. We define a linear map Ψ_Y of m to N by

$$\Psi_V : m \ni Y' \longmapsto \Psi(Y, Y') \in \mathbf{N}$$

and denote by $\mathbf{Ker}(\Psi_Y)$ the kernel of Ψ_Y . We call an element $Y \in \mathbf{m}$ singular (resp. non-singular) with respect to Ψ if $\Psi_Y(\mathbf{m}) \neq \mathbf{N}$ (resp. $\Psi_Y(\mathbf{m}) = \mathbf{N}$).

Let $\Psi \in \mathcal{G}(P^2(H), \mathbb{N})$ and let $Y \in \operatorname{m}(Y \neq 0)$. Take an element $k \in K$ such that $\operatorname{Ad}(k)\mu \in \mathbb{R}Y$. Then, as shown in the proof of Proposition 5 of [7], the subspace $Q_Y = \operatorname{Ad}(k)^{-1}\operatorname{Ker}(\Psi_Y)$ is a pseudo-abelian subspace of m.

Proposition 8. Let $\Psi \in \mathcal{G}(P^2(H), N)$ and let $Y \in m \ (Y \neq 0)$. Then:

- (1) dim $\mathbf{Ker}(\mathbf{\Psi}_Y) = 2$ or 3. Moreover, Y is non-singular (resp. singular) with respect to $\mathbf{\Psi}$ if and only if dim $\mathbf{Ker}(\mathbf{\Psi}_Y) = 2$ (resp. dim $\mathbf{Ker}(\mathbf{\Psi}_Y) = 3$).
- (2) Let $k \in K$ satisfy $Ad(k)\mu \in \mathbf{R}Y$. Then, $\mathbf{Ker}(\Psi_Y) \subset Ad(k)m_2$. Consequently, Y is non-singular (resp. singular) with respect to Ψ if and only if $\mathbf{Ker}(\Psi_Y)$ ($Ad(k)m_2$ (resp. $\mathbf{Ker}(\Psi_Y) = Ad(k)m_2$).

Remark 1. Recall that in the case of the Cayley projective plane $P^2(Cay)$ the inclusion $\mathbf{Ker}(\Psi_Y) \subset \mathrm{Ad}(k)\mathrm{m}_2$ in Proposition 8 (2) can be proved by a simple discussion. There, the inclusion automatically follows from the fact that any high-dimensional pseudo-abelian subspace must be contained in m_2 (see Propositions 8 and 12 of [8]). In contrast, it is not a simple task to show the inclusion $\mathbf{Ker}(\Psi_Y) \subset \mathrm{Ad}(k)\mathrm{m}_2$ in our case $P^2(H)$. We will prove this inclusion by making use of the normal form of the pseudo-abelian subspaces not contained in m_2 (see Proposition 5).

Proof of Proposition 8. Let $Y \in m$ $(Y \neq 0)$. Set $Q_Y = \operatorname{Ad}(k)^{-1}\mathbf{Ker}(\Psi_Y)$, where $k \in K$ is an element satisfying $\operatorname{Ad}(k)\mu \in \mathbf{R}Y$. Since Q_Y is pseudo-abelian, it follows that $\dim Q_Y \leq 3$ (see Proposition 4). Hence, $\dim \mathbf{Ker}(\Psi_Y) \leq 3$. On the other hand, since $\dim \mathbf{N} = 6$ and $\dim \mathbf{m} = 8$, it follows that $\dim \mathbf{Ker}(\Psi_Y) \geq 2$. Therefore, Y is non-singular (resp. singular) with respect to Ψ if and only if $\dim \mathbf{Ker}(\Psi_Y) = 2$ (resp. $\dim \mathbf{Ker}(\Psi_Y) = 3$). This proves (1).

To show the first statement of (2) it suffices to prove $Q_Y \subset m_2$. Now, let us suppose the contrary, i.e., $Q_Y \not\subset m_2$. Then, we have $\dim Q_Y = 2$ (see (1) and Proposition 4 (2)). Hence, there is a basis $\{\xi,\eta\}$ of Q_Y written in the form $\xi = \mu + \xi_1, \eta = \eta_1 + (1/4(\mu,\mu)^2)[\mu, [\xi_1,\eta_1]]$, where ξ_1 and η_1 are elements of m_1 satisfying $(\xi_1,\xi_1)=2(\mu,\mu), \eta_1\neq 0$, $(\xi_1,\eta_1)=0$ (see Proposition 5). Let $\{\zeta_1^1,\zeta_1^2\}$ be a basis of the orthogonal complement of $\mathbf{R}\xi_1+\mathbf{R}\eta_1$ in m_1 . Set $\zeta^i=\zeta_1^i+(1/4(\mu,\mu)^2)[\mu, [\xi_1,\zeta_1^i]]$ (i=1,2). Since $[\mu, [\xi_1,\zeta_1^i]]\in m_2$ (i=1,2), we know that the vectors ζ^1 and ζ^2 are linearly independent. More strongly, they are linearly independent modulo Q_Y , i.e., $Q_Y\cap (\mathbf{R}\zeta^1+\mathbf{R}\zeta^2)=0$. Moreover, by Proposition 5 we know that the subspace $Q^i=\mathbf{R}\xi+\mathbf{R}\zeta^i$ (i=1,2) is also pseudo-abelian, because $(\xi_1,\zeta_1^i)=0$. Consequently, we have $[[\xi,\zeta^i],\mu]=0$ (i=1,2).

Set $X = \operatorname{Ad}(k)\xi$, $Z^i = \operatorname{Ad}(k)\zeta^i$ (i = 1, 2). Then, we have $X \in \operatorname{Ker}(\Psi_Y)(X \neq 0)$, $\operatorname{Ker}(\Psi_Y) \cap (RZ^1 + RZ^2) = 0$ and $[[X, Z^i], Y] = 0$ (i = 1, 2). By the Gauss equation (3.1) we have

$$0 = (\lceil [X, Z^i], Y], W) = \langle \Psi(X, Y), \Psi(Z^i, W) \rangle - \langle \Psi(X, W), \Psi(Z^i, Y) \rangle, \quad (i = 1, 2),$$

where W is an arbitrary element of m. Since $\Psi_Y(X) = 0$, we obtain by this equality $\langle \Psi_X(W), \Psi(Z^i, Y) \rangle = 0$, i.e., $\langle \Psi_X(\mathbf{m}), \Psi(Z^i, Y) \rangle = 0$ (i = 1, 2). We note that the vectors $\Psi(Z^1, Y)$ and $\Psi(Z^2, Y)$ are linearly independent, because $\mathbf{Ker}(\Psi_Y) \cap (\mathbf{R}Z^1 + \mathbf{R}Z^2) = 0$. Hence, we have $\dim \Psi_X(\mathbf{m}) \leq \dim \mathbf{N} - 2 = 4$, implying $\dim \mathbf{Ker}(\Psi_X) \geq 4$. This contradicts the assertion (1). Thus, we have $Q_Y \subset \mathbf{m}_2$, proving the first statement of (2). The last statement of (2) is now clear.

As a corollary of Proposition 8 we obtain

Proposition 9. Let $\Psi \in \mathcal{G}(P^2(H), N)$. Then:

- (1) Let $Y_0 \in a + m_2 (Y_0 \neq 0)$. Then, $\mathbf{Ker}(\Psi_{Y_0}) \subset \{\xi \in a + m_2 | (\xi, Y_0) = 0\}$. If Y_0 is singular with respect to Ψ , then $\mathbf{Ker}(\Psi_{Y_0}) = \{\xi \in a + m_2 | (\xi, Y_0) = 0\}$.
- (2) Let $Y_1 \in m_1$ $(Y_1 \neq 0)$. Then, $\mathbf{Ker}(\Psi_{Y_1}) \subset \{\eta \in m_1 \mid (\eta, Y_1) = 0\}$. If Y_1 is singular with respect to Ψ , then $\mathbf{Ker}(\Psi_{Y_1}) = \{\eta \in m_1 \mid (\eta, Y_1) = 0\}$.

Proof. Let $Y_0 \in a + m_2$ $(Y_0 \neq 0)$. Then, we can take an element $k_0 \in K$ such that $Ad(k_0)\mu \in \mathbf{R}Y_0$ and $Ad(k_0)(m_2) = \{\xi \in a + m_2 \mid (\xi, Y_0) = 0\}$ (see Proposition 7 of [7]). This proves (1). Similarly, for $Y_1 \in m_1$ $(Y_1 \neq 0)$, we can easily show (2).

Let $\Psi \in S^2 \mathbf{m}^* \otimes \mathbf{N}$. We call a subspace U of \mathbf{m} singular with respect to Ψ if each element of U is singular with respect to Ψ .

Proposition 10. Let $\Psi \in \mathcal{G}(P^2(H), \mathbb{N})$. Assume that $Y \in \operatorname{m}(Y \neq 0)$ is non-singular with respect to Ψ . Then, there is a non-zero vector $\mathbf{E} \in \mathbb{N}$ such that

$$\mathbf{N} = \mathbf{R}\mathbf{E} + \mathbf{\Psi}_{\xi}(\mathbf{m}) \ (orthogonal \ direct \ sum) \tag{3.2}$$

holds for any $\xi \in \mathbf{Ker}(\Psi_Y)$ ($\xi \neq 0$). Consequently, $\mathbf{Ker}(\Psi_Y)$ is a singular subspace with respect to Ψ .

Proof. Take an element $k \in K$ such that $Ad(k)\mu \in \mathbf{R}Y$. Then, since Y is non-singular, we have $\mathbf{Ker}(\Psi_Y)$ ($Ad(k)\mathbf{m}_2$. Take a non-zero element satisfying $Y' \in Ad(k)\mathbf{m}_2$ and $Y' \notin \mathbf{Ker}(\Psi_Y)$ and set $\mathbf{E} = \Psi(Y,Y')$ ($\neq 0$). Let $\xi \in \mathbf{Ker}(\Psi_Y)$ ($\xi \neq 0$). Then, by the Gauss equation (3.1) we have

$$\left(\left[\left[\xi,Y'\right],Y\right],W\right)=\left\langle \Psi(\xi,Y),\Psi(Y',W)\right\rangle -\left\langle \Psi(\xi,W),\Psi(Y',Y)\right\rangle,$$

where W is an arbitrary element of \mathbf{m} . Here, we note that $[\xi, Y'], Y] = 0$, because $[\xi, Y'], Y] \in \mathrm{Ad}(k)[[\mathbf{m}_2, \mathbf{m}_2], \mu] = 0$. Since $\Psi(\xi, Y) = 0$, we obtain by the above equality $\langle \mathbf{E}, \Psi(\xi, W) \rangle = 0$. This shows $\langle \mathbf{E}, \Psi_{\xi}(\mathbf{m}) \rangle = 0$ and hence $\Psi_{\xi}(\mathbf{m}) \neq \mathbf{N}$. Consequently, ξ is singular with respect to Ψ . Since $\dim \mathbf{Ker}(\Psi_{\xi}) = 3$ (see Proposition 8), we have $\dim \Psi_{\xi}(\mathbf{m}) = 5$, which proves the decomposition (3.2).

4. Proof of Theorem 6

In this section, with the preparations in the previous sections, we will prove Theorem 6. We first show

Proposition 11. Let $\Psi \in \mathcal{G}(P^2(\boldsymbol{H}), \boldsymbol{N})$. Then, there are singular subspaces $U \subset (a + m_2)$ and $V \subset (m_1)$ with respect to Ψ satisfying dim $U \geq 2$ and dim $V \geq 2$.

Proof. If $a + m_2$ contains no non-singular element with respect to Ψ , then set $U = a + m_2$. On the contrary, if there is a non-singular element $Y_0 \in a + m_2$, then set $U = \mathbf{Ker}(\Psi_{Y_0})$. In this case we know that $\dim U = 2$, $U \subset a + m_2$ and that U is a singular subspace with respect to Ψ (see Proposition 8, Proposition 9 and Proposition 10).

Similarly, we can show that there is a singular subspace V of m_1 with respect to Ψ satisfying the desired properties.

Proposition 12. Let $\Psi \in \mathcal{G}(P^2(H), \mathbb{N})$. Let $U \subset a + m_2$ and $V \subset m_1$ be singular subspaces with respect to Ψ satisfying dim $U \geq 2$ and dim $V \geq 2$. Then, there are vectors \mathbf{A} , $\mathbf{B} \in \mathbb{N}$ such that:

- (1) $\langle \mathbf{A}, \mathbf{A} \rangle = \langle \mathbf{B}, \mathbf{B} \rangle = 4(\mu, \mu).$
- (2) Let $\xi \in U$ and $\eta \in V$. Then:

(2a)
$$\Psi(\xi, Y_0) = (\xi, Y_0) \mathbf{A}, \forall Y_0 \in \mathbf{a} + \mathbf{m}_2;$$

(2b)
$$\Psi(\eta, Y_1) = (\eta, Y_1)\mathbf{B}, \forall Y_1 \in \mathbf{m}_1.$$

- (3) Let $Y_0 \in a + m_2$ and $Y_1 \in m_1$. Then:
 - (3a) $\langle \mathbf{A}, \mathbf{\Psi}_{Y_0}(\mathbf{m}_1) \rangle = \langle \mathbf{B}, \mathbf{\Psi}_{Y_0}(\mathbf{m}_1) \rangle = 0;$

(3b)
$$\langle \mathbf{A}, \mathbf{\Psi}_{Y_1}(\mathbf{a} + \mathbf{m}_2) \rangle = \langle \mathbf{B}, \mathbf{\Psi}_{Y_1}(\mathbf{a} + \mathbf{m}_2) \rangle = 0.$$

- (4) Let $\xi \in U \ (\xi \neq 0)$ and $\eta \in V \ (\eta \neq 0)$. Then:
 - (4a) $\Psi_{\xi}(\mathbf{m}) = \mathbf{R}\mathbf{A} + \Psi_{\xi}(\mathbf{m}_1)$ (orthogonal direct sum);
 - (4b) $\Psi_{\eta}(\mathbf{m}) = \mathbf{R}\mathbf{B} + \Psi_{\eta}(\mathbf{a} + \mathbf{m}_2)$ (orthogonal direct sum).
- (5) Let $Y_0 \in a + m_2$ and $Y_1 \in m_1$. Then:
 - (5a) $\langle \Psi(Y_0, Y_0), \mathbf{A} \rangle = 4(\mu, \mu)(Y_0, Y_0);$
 - (5b) $\langle \mathbf{\Psi}(Y_1, Y_1), \mathbf{B} \rangle = 4(\mu, \mu)(Y_1, Y_1).$
- (6) Let $\xi \in U$, $\eta \in V$, $Y_0 \in a + m_2$ and $Y_1 \in m_1$. Assume that $(\xi, Y_0) = (\eta, Y_1) = 0$. Then:
 - (6a) $\langle \mathbf{\Psi}(Y_0, Y_0), \mathbf{\Psi}_{\xi}(\mathbf{m}_1) \rangle = 0;$
 - (6b) $\langle \mathbf{\Psi}(Y_1, Y_1), \mathbf{\Psi}_{\eta}(\mathbf{a} + \mathbf{m}_2) \rangle = 0.$

Proof. The assertions (1), (2) and (3) can be proved in the same manner as in the proof of Proposition 16 of [8]. Hence, we omit their proofs.

Let $\xi \in U$ ($\xi \neq 0$). By (2a) we easily get $\Psi_{\xi}(\mathbf{a} + \mathbf{m}_2) = \mathbf{R}\mathbf{A}$ and hence $\Psi_{\xi}(\mathbf{m}) = \mathbf{R}\mathbf{A} + \Psi_{\xi}(\mathbf{m}_1)$. Since $\langle \mathbf{A}, \Psi_{\xi}(\mathbf{m}_1) \rangle = 0$ (see (3a)), we have the decomposition (4a). Similarly, we can show (4b).

The assertions (5a) and (6a) are proved as follows: Let $Y_0 \in a + m_2$. Take $\xi \in U$ ($\xi \neq 0$) such that $(\xi, Y_0) = 0$. Then, we have $[[Y_0, \xi], Y_0] = 4(\mu, \mu)(Y_0, Y_0)\xi$ (see (2.2)) and $\Psi(\xi, Y_0) = 0$ (see (2a)). By the Gauss equation (3.1) we have

$$\big(\big[\big[Y_0,\xi\big],Y_0\big],\xi\big)=\big\langle\boldsymbol{\Psi}(Y_0,Y_0),\boldsymbol{\Psi}(\xi,\xi)\big\rangle-\big\langle\boldsymbol{\Psi}(Y_0,\xi),\boldsymbol{\Psi}(\xi,Y_0)\big\rangle,$$

$$(\lceil [Y_0,\xi],Y_0],Y_1') = \langle \mathbf{\Psi}(Y_0,Y_0),\mathbf{\Psi}(\xi,Y_1')\rangle - \langle \mathbf{\Psi}(Y_0,Y_1'),\mathbf{\Psi}(\xi,Y_0)\rangle,$$

where Y_1' is an arbitrary element of m_1 . By these equalities we have $\langle \Psi(Y_0, Y_0), \mathbf{A} \rangle = 4(\mu, \mu)(Y_0, Y_0)$ and $\langle \Psi(Y_0, Y_0), \Psi(\xi, Y_1') \rangle = 0$. Therefore, we obtain (5a) and (6a). The assertions (5b) and (6b) can be proved in a similar way.

Remark 2. As seen in the proof of Proposition 11, singular subspaces U and V may not be uniquely determined. However, the vectors \mathbf{A} and \mathbf{B} in Proposition 8 do not depend on the choice of singular subspaces U and V, which will be clarified at the last part of this section (see Lemma 20).

In the following argument, we take and fix an element $\Psi \in \mathcal{G}(P^2(H), \mathbb{N})$. We denote by U and V singular subspaces with respect to Ψ satisfying $U \subset (a + m_2)$, $V \subset (m_1)$, dim $U \geq 2$ and dim $V \geq 2$. We also denote by \mathbb{A} , \mathbb{B} the vectors of \mathbb{N} obtained by applying Proposition 12 to the pair of singular subspaces U and V.

Lemma 13. (1) Let $Y_0 \in a + m_2$. Then:

$$\langle \Psi_{Y_0}(Y_1), \Psi_{Y_0}(Y_1') \rangle = \langle \Psi(Y_0, Y_0), \Psi(Y_1, Y_1') \rangle - (\mu, \mu) (Y_0, Y_0) (Y_1, Y_1'), \quad \forall Y_1, Y_1' \in m_1.$$

(2) Let $Y_0 \in a + m_2$ and $\xi \in U$ satisfy $(\xi, Y_0) = 0$. Then:

$$\left\langle \mathbf{\Psi}_{Y_0}(Y_1), \mathbf{\Psi}_{\xi}(Y_1') \right\rangle = \left(L(Y_0, \xi) Y_1, Y_1' \right), \quad \forall Y_1, Y_1' \in m_1.$$

Proof. Putting $X = Y_0$, $Y = Y_1$, $Z = Y_0$, $W = Y'_1$ into (3.1), we have

$$\left(\left[\left[Y_{0},Y_{1}\right],Y_{0}\right],Y_{1}'\right)=\left\langle \mathbf{\Psi}(Y_{0},Y_{0}),\mathbf{\Psi}(Y_{1},Y_{1}')\right\rangle -\left\langle \mathbf{\Psi}(Y_{0},Y_{1}'),\mathbf{\Psi}(Y_{1},Y_{0})\right\rangle.$$

Since $[Y_0, [Y_0, Y_1]] = -(\mu, \mu)(Y_0, Y_0)Y_1$ (see (2.2)), we easily get (1).

Similarly, putting $X = \xi$, $Y = Y_1$, $Z = Y_0$ and $W = Y_1'$ into (3.1), we have

$$\begin{aligned}
\left(\left[\left[\xi,Y_{1}\right],Y_{0}\right],Y_{1}'\right) &= \left\langle \mathbf{\Psi}(\xi,Y_{0}),\mathbf{\Psi}(Y_{1},Y_{1}')\right\rangle - \left\langle \mathbf{\Psi}(\xi,Y_{1}'),\mathbf{\Psi}(Y_{1},Y_{0})\right\rangle \\
&= \left\langle \mathbf{A},\mathbf{\Psi}(Y_{1},Y_{1}')\right\rangle \left(\xi,Y_{0}\right) - \left\langle \mathbf{\Psi}_{\xi}(Y_{1}'),\mathbf{\Psi}_{Y_{0}}(Y_{1})\right\rangle.
\end{aligned}$$

Since $(\xi, Y_0) = 0$, we have

$$\langle \Psi_{\xi}(Y_1'), \Psi_{Y_0}(Y_1) \rangle = -([[\xi, Y_1], Y_0], Y_1') = (L(Y_0, \xi)Y_1, Y_1'),$$

proving (2). Λ

Let $\xi \in U$ ($\xi \neq 0$). Since dim $\mathbf{Ker}(\Psi_{\xi}) = 3$ (see Proposition 8) and since dim $\mathbf{m} = 8$, we have dim $\Psi_{\xi}(\mathbf{m}) = 5$. Let us denote by \mathbf{E}_{ξ} the one dimensional orthogonal complement of $\Psi_{\xi}(\mathbf{m})$ in \mathbf{N} .

Proposition 14. Set $C = \langle \mathbf{A}, \mathbf{B} \rangle - (\mu, \mu)$. Then:

(1) Let $\xi \in U$. Then:

$$\langle \Psi_{\xi}(Y_1), \Psi_{\xi}(\eta) \rangle = C(\xi, \xi)(Y_1, \eta), \quad \forall Y_1 \in \mathbf{m}_1, \forall \eta \in V.$$
 (4.1)

- (2) The inequality $0 < C \le 3(\mu, \mu)$ holds. The vectors **A** and **B** are linearly independent if $C \ne 3(\mu, \mu)$ and A = B if $C = 3(\mu, \mu)$.
- (3) Let $\xi \in U \ (\xi \neq 0)$. Then, $\Psi_{Y_0}(\mathbf{m}_1) \subset \mathbf{E}_{\xi} + \Psi_{\xi}(\mathbf{m}_1)$, $\forall Y_0 \in \mathbf{a} + \mathbf{m}_2$.
- (4) If $C \neq 3(\mu, \mu)$, then:

$$\Psi_{Y_0}(\mathbf{m}_1) = \Psi_{\xi}(\mathbf{m}_1), \qquad \forall Y_0 \in \mathbf{a} + \mathbf{m}_2 (Y_0 \neq 0), \forall \xi \in U (\xi \neq 0);$$
 (4.2)

$$\Psi(Y_0, Y_0) \in \mathbf{R}\mathbf{A} + \mathbf{R}\mathbf{B}, \qquad \forall Y_0 \in \mathbf{a} + \mathbf{m}_2; \tag{4.3}$$

$$\Psi(Y_1, Y_1) \in \mathbf{R}\mathbf{A} + \mathbf{R}\mathbf{B}, \qquad \forall Y_1 \in \mathbf{m}_1. \tag{4.4}$$

Proof. Put $Y_0 = \xi$ and $Y_1' = \eta$ into Lemma 13 (1). Then, since $\Psi(\xi, \xi) = (\xi, \xi) \mathbf{A}$ and $\Psi(Y_1, \eta) = (Y_1, \eta) \mathbf{B}$, we get (4.1).

In view of Proposition 12 (1), we easily have $\langle \mathbf{A}, \mathbf{B} \rangle \leq 4(\mu, \mu)$ and hence $C \leq 3(\mu, \mu)$. Further, by putting $Y_1 = \eta \neq 0$ into (4.1) we know C > 0, because $\Psi_{\xi}(\eta) \neq 0$ (see Proposition 9). This shows $\langle \mathbf{A}, \mathbf{B} \rangle > (\mu, \mu)$. Therefore, \mathbf{A} and \mathbf{B} are linearly independent if $\langle \mathbf{A}, \mathbf{B} \rangle \neq 4(\mu, \mu)$, i.e., $C \neq 3(\mu, \mu)$. It is easy to see that if $C = 3(\mu, \mu)$, i.e., $\langle \mathbf{A}, \mathbf{B} \rangle = 4(\mu, \mu)$, then $\mathbf{A} = \mathbf{B}$.

We next prove (3). Let $\xi \in U$ ($\xi \neq 0$). By Proposition 12 (4a) we know that the orthogonal complement of $\mathbf{R}\mathbf{A}$ in \mathbf{N} is given by $\mathbf{E}_{\xi} + \mathbf{\Psi}_{\xi}(\mathbf{m}_1)$. Hence, by Proposition 12 (3a), we have $\mathbf{\Psi}_{Y_0}(\mathbf{m}_1) \subset \mathbf{E}_{\xi} + \mathbf{\Psi}_{\xi}(\mathbf{m}_1)$ for any $Y_0 \in \mathbf{a} + \mathbf{m}_2$.

Finally, we prove (4). Since $C \neq 3(\mu, \mu)$, the subspace $\mathbf{RA} + \mathbf{RB}$ forms a 2-dimensional subspace of \mathbf{N} . Let $Y_0 \in \mathbf{a} + \mathbf{m}_2$ ($Y_0 \neq 0$). Then, by Proposition 12 (3a) we know that $\Psi_{Y_0}(\mathbf{m}_1)$ coincides with the orthogonal complement of $\mathbf{RA} + \mathbf{RB}$ in \mathbf{N} . (Recall that $\dim \Psi_{Y_0}(\mathbf{m}_1) = 4$ and $\dim \mathbf{N} = 6$.) Let $\xi \in U$ ($\xi \neq 0$). Since $\Psi_{\xi}(\mathbf{m}_1)$ is also an orthogonal complement of $\mathbf{RA} + \mathbf{RB}$, it follows that $\Psi_{\xi}(\mathbf{m}_1) = \Psi_{Y_0}(\mathbf{m}_1)$. If we take $\xi \in U$ ($\xi \neq 0$) satisfying $(\xi, Y_0) = 0$, then by Proposition 12 (6a) we obtain $\Psi(Y_0, Y_0) \in \mathbf{RA} + \mathbf{RB}$. Similarly, we can prove $\Psi(Y_1, Y_1) \in \mathbf{RA} + \mathbf{RB}$ for any $Y_1 \in \mathbf{m}_1$, completing the proof of (4).

Let $Y_0 \in \mathbf{a} + \mathbf{m}_2$ and $\xi \in U (\xi \neq 0)$. Define a linear mapping $\Theta_{Y_0,\xi} \colon \mathbf{m}_1 \longrightarrow \mathbf{N}$ by

$$\mathbf{\Theta}_{Y_0,\xi}(Y_1) = \mathbf{\Psi}_{Y_0}(Y_1) + \frac{1}{C(\xi,\xi)} \mathbf{\Psi}_{\xi}(L(\xi,Y_0)Y_1), \quad Y_1 \in \mathbf{m}_1.$$
 (4.5)

Then, we have

Λ

Proposition 15. Let $Y_0 \in a + m_2$, $\xi \in U(\xi \neq 0)$ and $Y_1 \in m_1$. Assume that $(\xi, Y_0) = 0$ and $L(\xi, Y_0)Y_1 \in V$. Then:

(1) $\Theta_{Y_0,\xi}(Y_1) \in \mathbf{E}_{\xi}$. More strongly, if $C \neq 3(\mu,\mu)$, then $\Theta_{Y_0,\xi}(Y_1) = 0$.

$$(2) |\Theta_{Y_0,\xi}(Y_1)|^2 = \langle \Psi(Y_0, Y_0), \Psi(Y_1, Y_1) \rangle - (\mu, \mu) \{ 1 + (\mu, \mu)/C \} (Y_0, Y_0) (Y_1, Y_1).$$

Proof. By Proposition 14 (3) we know that $\Theta_{Y_0,\xi}(Y_1) \in \mathbf{E}_{\xi} + \Psi_{\xi}(m_1)$. Here, we note that $\langle \mathbf{E}_{\xi}, \Psi_{\xi}(m_1) \rangle = 0$, because \mathbf{E}_{ξ} is orthogonal to $\Psi_{\xi}(m)$. Let $Y'_1 \in m_1$. Then, by Lemma 13 (2), Proposition 14 (1) and Proposition 3 (2) we have

$$\langle \mathbf{\Theta}_{Y_0,\xi}(Y_1), \mathbf{\Psi}_{\xi}(Y_1') \rangle = \langle \mathbf{\Psi}_{Y_0}(Y_1), \mathbf{\Psi}_{\xi}(Y_1') \rangle + \frac{1}{C(\xi,\xi)} \langle \mathbf{\Psi}_{\xi}(L(\xi,Y_0)Y_1), \mathbf{\Psi}_{\xi}(Y_1') \rangle$$
$$= (L(Y_0,\xi)Y_1, Y_1') + (L(\xi,Y_0)Y_1, Y_1')$$
$$= 0.$$

proving $\langle \mathbf{\Theta}_{Y_0,\xi}(Y_1), \mathbf{\Psi}_{\xi}(\mathbf{m}_1) \rangle = 0$. This implies that $\mathbf{\Theta}_{Y_0,\xi}(Y_1) \in \mathbf{E}_{\xi}$. In the case where $C \neq 3(\mu,\mu)$, we have $\mathbf{\Theta}_{Y_0,\xi}(Y_1) \in \mathbf{\Psi}_{Y_0}(\mathbf{m}_1) + \mathbf{\Psi}_{\xi}(\mathbf{m}_1) = \mathbf{\Psi}_{\xi}(\mathbf{m}_1)$ (see (4.2)), which proves $\mathbf{\Theta}_{Y_0,\xi}(Y_1) = 0$.

Next, we show (2). By Lemma 13 and by the equality $\langle \Theta_{Y_0,\xi}(Y_1), \Psi_{\xi}(\mathbf{m}_1) \rangle = 0$, we have

$$\begin{split} \left\langle \boldsymbol{\Theta}_{Y_0,\xi}(Y_1), \boldsymbol{\Theta}_{Y_0,\xi}(Y_1) \right\rangle &= \left\langle \boldsymbol{\Theta}_{Y_0,\xi}(Y_1), \boldsymbol{\Psi}_{Y_0}(Y_1) \right\rangle \\ &= \left\langle \boldsymbol{\Psi}_{Y_0}(Y_1), \boldsymbol{\Psi}_{Y_0}(Y_1) \right\rangle + \frac{1}{C\left(\xi,\xi\right)} \left\langle \boldsymbol{\Psi}_{\xi}(L(\xi,Y_0)Y_1), \boldsymbol{\Psi}_{Y_0}(Y_1) \right\rangle \\ &= \left\langle \boldsymbol{\Psi}(Y_0,Y_0), \boldsymbol{\Psi}(Y_1,Y_1) \right\rangle - \left(\mu,\mu\right) \left(Y_0,Y_0\right) \left(Y_1,Y_1\right) \\ &+ \frac{1}{C\left(\xi,\xi\right)} \left(L(\xi,Y_0)Y_1, L(Y_0,\xi)Y_1\right). \end{split}$$

On the other hand, by Proposition 3 we have

$$\begin{split} \left(L(\xi, Y_0) Y_1, L(Y_0, \xi) Y_1 \right) &= \left(L(\xi, Y_0) L(\xi, Y_0) Y_1, Y_1 \right) \\ &= - \left(L(Y_0, \xi) L(\xi, Y_0) Y_1, Y_1 \right) \\ &= - \left(\mu, \mu \right)^2 \left(\xi, \xi \right) \left(Y_0, Y_0 \right) \left(Y_1, Y_1 \right). \end{split}$$

Therefore, we get the assertion (2).

With these preparations we begin with the proof Theorem 6. First, we consider the case $\dim V = 2$.

Lemma 16. Assume that dim V = 2. Then, $C \neq 3(\mu, \mu)$. Accordingly, the vectors **A** and $\mathbf{B} \in \mathbf{N}$ are linearly independent.

Proof. Take non-zero elements $\xi, \xi' \in U$ satisfying $(\xi, \xi') = 0$. Then, by Proposition 3 (2) it follows that $L(\xi, \xi') = -L(\xi', \xi)$ and $L(\xi, \xi')$ gives an isomorphism of m_1 onto itself. Let $Y_1 \in L(\xi, \xi')V$. Then, by Proposition 3 (2b) we have $L(\xi, \xi')Y_1 \in V$. Hence, by Proposition 15 (1) we have $\Theta_{\xi',\xi}(Y_1) \in \mathbf{E}_{\xi}$. Since $\dim L(\xi,\xi')V = \dim V = 2$ and $\dim \mathbf{E}_{\xi} = 1$, it is possible to take a non-zero element $Y_1 \in L(\xi,\xi')V$ satisfying $\Theta_{\xi',\xi}(Y_1) = 0$. Therefore, by Proposition 15 (2) and Proposition 12 (2a) we have

$$0 = |\mathbf{\Theta}_{\xi',\xi}(Y_1)|^2 = \left[\left\langle \mathbf{\Psi}(Y_1, Y_1), \mathbf{A} \right\rangle - \left(\mu, \mu \right) \left\{ 1 + \left(\mu, \mu \right) / C \right\} \left(Y_1, Y_1 \right) \right] (\xi', \xi').$$

Since $(\xi', \xi') \neq 0$, we have

$$\langle \Psi(Y_1, Y_1), \mathbf{A} \rangle = (\mu, \mu) \{ 1 + (\mu, \mu) / C \} (Y_1, Y_1).$$
 (4.6)

Now, we suppose the case $C=3(\mu,\mu)$. Then, by (4.6) we have $\langle \Psi(Y_1,Y_1), \mathbf{A} \rangle = \frac{4}{3}(\mu,\mu)(Y_1,Y_1)$. On the other hand, by Proposition 12 (5b) we have $\langle \Psi(Y_1,Y_1), \mathbf{A} \rangle = 4(\mu,\mu)(Y_1,Y_1)$, because $\mathbf{A}=\mathbf{B}$ in case $C=3(\mu,\mu)$ (see Proposition 14 (2)). Hence, we have $(Y_1,Y_1)=0$, which contradicts the assumption $Y_1\neq 0$. Therefore, we have $C\neq 3(\mu,\mu)$ and hence \mathbf{A} and \mathbf{B} are linearly independent.

Lemma 17. Assume that dim V=2. Then, V can be extended to a 3-dimensional singular subspace contained in m_1 , i.e., there is a singular subspace \widehat{V} ($\subset m_1$) such that $V \subset \widehat{V}$ and dim $\widehat{V}=3$.

Proof. Let $\mathbf{F} \in \mathbf{RA} + \mathbf{RB}$ be a unit vector which is orthogonal to \mathbf{B} . Then, for any $\eta \in V$ we have $\langle \mathbf{F}, \Psi_{\eta}(\mathbf{m}) \rangle = 0$, because $\langle \mathbf{F}, \Psi_{\eta}(\mathbf{m}) \rangle = \langle \mathbf{F}, \mathbf{RB} + \Psi_{\eta}(\mathbf{a} + \mathbf{m}_2) \rangle = 0$ (see Proposition 12 (4b) and (3b)).

Now, define a symmetric bilinear form χ on m_1 by setting

$$\chi(Y_1,Y_1') = \big\langle \boldsymbol{\Psi}(Y_1,Y_1'), \boldsymbol{\mathrm{F}} \big\rangle, \qquad Y_1,Y_1' \in m_1.$$

Since $\Psi(Y_1, Y_1') \in \mathbf{RB} + \mathbf{RF}$ (see Proposition 14 (4)) and $\langle \Psi(Y_1, Y_1'), \mathbf{B} \rangle = \langle \mathbf{B}, \mathbf{B} \rangle (Y_1, Y_1')$ for $Y_1, Y_1' \in \mathbf{m}_1$ (see Proposition 12 (5)), we have

$$\mathbf{\Psi}(Y_1, Y_1') = (Y_1, Y_1')\mathbf{B} + \chi(Y_1, Y_1')\mathbf{F}, \qquad Y_1, Y_1' \in \mathbf{m}_1.$$
(4.7)

Let V^{\perp} be the orthogonal complement of V in m_1 . Then, we have dim $V^{\perp}=2$. (Recall that dim $m_1=4$ and dim V=2.) Let $\{Y_1,Y_1'\}$ be an orthonormal basis of V^{\perp} . Then, putting $X=Z=Y_1$ and $Y=W=Y_1'$ into the Gauss equation (3.1), we have

$$([[Y_1, Y_1'], Y_1], Y_1') = \langle \mathbf{B}, \mathbf{B} \rangle (Y_1, Y_1) (Y_1', Y_1') + \chi(Y_1, Y_1) \chi(Y_1', Y_1') - \chi(Y_1, Y_1') \chi(Y_1', Y_1).$$

Since $([[Y_1, Y_1'], Y_1], Y_1') = \langle \mathbf{B}, \mathbf{B} \rangle (Y_1, Y_1) (Y_1', Y_1')$ (see (2.2)), we have

$$\chi(Y_1, Y_1)\chi(Y_1', Y_1') - \chi(Y_1, Y_1')\chi(Y_1', Y_1) = 0.$$

Λ

This implies that χ is degenerate on V^{\perp} . Therefore, there is a non-zero vector $\zeta \in V^{\perp}$ such that $\chi(\zeta, V^{\perp}) = 0$, i.e., $\langle \mathbf{F}, \Psi_{\zeta}(V^{\perp}) \rangle = 0$.

Let us show that the subspace $\widehat{V} = \mathbf{R}\zeta + V \ (\subset m_1)$ is singular with respect to Ψ . Note that $\langle \mathbf{F}, \Psi_{\zeta}(\mathbf{a} + \mathbf{m}_2) \rangle = 0$ (see Proposition 12 (3b)). Then, since $\mathbf{m} = \mathbf{a} + \mathbf{m}_2 + V + V^{\perp}$ and $\Psi_{\zeta}(V) \subset \mathbf{R}\mathbf{B}$, it follows that

$$\langle \mathbf{F}, \mathbf{\Psi}_{\zeta}(\mathbf{m}) \rangle = \langle \mathbf{F}, \mathbf{\Psi}_{\zeta}(\mathbf{a} + \mathbf{m}_2) + \mathbf{\Psi}_{\zeta}(V) + \mathbf{\Psi}_{\zeta}(V^{\perp}) \rangle \subset 0 + \langle \mathbf{F}, \mathbf{R} \mathbf{B} \rangle + 0 = 0.$$

Hence, we have $\langle \mathbf{F}, \Psi_{a\zeta+\eta}(\mathbf{m}) \rangle = 0$ for any $a \in \mathbf{R}$ and $\eta \in V$. Consequently, $\Psi_{a\zeta+\eta}(\mathbf{m}) \neq \mathbf{N}$, which implies that $a\zeta + \eta \in \widehat{V}$ is singular with respect to Ψ .

Now, we assume that $\dim V = 2$ and denote by \widehat{V} be the singular subspace stated in the above lemma. Let $\widehat{\mathbf{A}}$ and $\widehat{\mathbf{B}}$ be the vectors obtained by applying Proposition 12 to the pair of singular subspaces U and \widehat{V} . Then, by Proposition 12 (2) we can easily see that $\widehat{\mathbf{A}} = \mathbf{A}$ and $\widehat{\mathbf{B}} = \mathbf{B}$. Therefore, we know that all the statements in Proposition 12 and hence the arguments developed after Proposition 12 are also true if we simply replace V by \widehat{V} . Accordingly, without loss of generality we can assume that $\dim V \geq 3$.

Lemma 18.
$$\langle \Psi(Y_0, Y_0), \mathbf{B} \rangle = (\mu, \mu) \{ 1 + (\mu, \mu)/C \} (Y_0, Y_0), \forall Y_0 \in \mathbf{a} + \mathbf{m}_2.$$

Proof. As in the proof of Lemma 16, we can prove that $C \neq 3(\mu, \mu)$. Let $Y_0 \in a + m_2$ $(Y_0 \neq 0)$. Take $\xi \in U$ $(\xi \neq 0)$ such that $(\xi, Y_0) = 0$, which is possible because dim $U \geq 2$. Then, by Proposition 3 (2) it follows that $L(\xi, Y_0) = -L(Y_0, \xi)$ and that the map $L(\xi, Y_0)$ gives an isomorphism of m_1 onto itself. Now, take $\eta \in V$ $(\eta \neq 0)$ such that $L(\xi, Y_0)\eta \in V$. This is also possible because dim $L(\xi, Y_0)V = \dim V \geq 3$ and dim $(V \cap L(\xi, Y_0)V) \geq 2$. (Note that dim $m_1 = 4$.) Then, by Proposition 15 and Proposition 12 (2b) we have

$$0 = |\mathbf{\Theta}_{Y_0,\xi}(\eta)|^2 = \left[\langle \mathbf{\Psi}(Y_0, Y_0), \mathbf{B} \rangle - (\mu, \mu) \{ 1 + (\mu, \mu)/C \} (Y_0, Y_0) \right] (\eta, \eta).$$

Since $(\eta, \eta) \neq 0$, we get the lemma.

Lemma 19.
$$C = (\mu, \mu), i.e., \langle \mathbf{A}, \mathbf{B} \rangle = 2(\mu, \mu).$$

Proof. Take $\xi \in U$ ($\xi \neq 0$). Then, by Lemma 18 and $\Psi(\xi, \xi) = (\xi, \xi) \mathbf{A}$ (see Proposition 12 (2a)), we have $\langle \mathbf{A}, \mathbf{B} \rangle = (\mu, \mu) \{1 + (\mu, \mu)/C\}$. Since $C = \langle \mathbf{A}, \mathbf{B} \rangle - (\mu, \mu)$, we easily have $C^2 = (\mu, \mu)^2$. Moreover, since C > 0 (see Proposition 14 (2)), it follows that $C = (\mu, \mu)$, i.e., $\langle \mathbf{A}, \mathbf{B} \rangle = 2(\mu, \mu)$.

Now, we show

Lemma 20. (1)
$$\Psi(Y_0, Y_0') = (Y_0, Y_0') \mathbf{A}, \quad \forall Y_0, Y_0' \in \mathbf{a} + \mathbf{m}_2.$$

(2) $\Psi(Y_1, Y_1') = (Y_1, Y_1') \mathbf{B}, \quad \forall Y_1, Y_1' \in \mathbf{m}_1.$

Proof. On account of an elementary fact concerning symmetric bilinear forms, we have only to show $\Psi(Y_0, Y_0) = (Y_0, Y_0)\mathbf{A}$ and $\Psi(Y_1, Y_1) = (Y_1, Y_1)\mathbf{B}$ for any $Y_0 \in \mathbf{a} + \mathbf{m}_2$ and $Y_1 \in \mathbf{m}_1$.

Let $Y_0 \in \mathbf{a} + \mathbf{m}_2$. Then, by Lemma 18 and Lemma 19 we have $\langle \Psi(Y_0, Y_0), \mathbf{B} \rangle = \langle \mathbf{A}, \mathbf{B} \rangle (Y_0, Y_0)$. Moreover, by Proposition 12 (1) and (5a) we have $\langle \Psi(Y_0, Y_0), \mathbf{A} \rangle = \langle \mathbf{A}, \mathbf{A} \rangle (Y_0, Y_0)$. Since $\Psi(Y_0, Y_0) \in \mathbf{R}\mathbf{A} + \mathbf{R}\mathbf{B}$ (see (4.3)), it follows that $\Psi(Y_0, Y_0) = (Y_0, Y_0)\mathbf{A}$, which proves (1).

We next prove (2). Let $Y_1 \in m_1$ ($Y_1 \neq 0$). Take elements $\xi \in U$ ($\xi \neq 0$) and $\eta \in V$ ($\eta \neq 0$) such that $(\eta, Y_1) = 0$. Set $Y_0 = [Y_1, [\xi, \eta]]$. Then, it is easy to see that $[\xi, \eta] \in k_1$ and $Y_0 \in a + m_2$ (see (2.1)). Further, we have $(\xi, Y_0) = 0$ and $L(\xi, Y_0)Y_1 \in V$, because

$$\begin{aligned} \left(\xi, Y_{0}\right) &= \left(\xi, \left[Y_{1}, \left[\xi, \eta\right]\right]\right) = -\left(\left[\xi, \left[\xi, \eta\right]\right], Y_{1}\right) = \left(\mu, \mu\right)\left(\xi, \xi\right)\left(\eta, Y_{1}\right) = 0, \\ L(\xi, Y_{0})Y_{1} &= \left[\xi, \left[\left[Y_{1}, \left[\xi, \eta\right]\right], Y_{1}\right]\right] = \left(\mu, \mu\right)\left(Y_{1}, Y_{1}\right)\left[\xi, \left[\xi, \eta\right]\right] \\ &= -\left(\mu, \mu\right)^{2}\left(\xi, \xi\right)\left(Y_{1}, Y_{1}\right)\eta \in V \end{aligned}$$

(see (2.2) and (2.4)). Thus, by Proposition 15 (2), Lemma 19 and $\Psi(Y_0, Y_0) = (Y_0, Y_0)\mathbf{A}$ (see (1)), we have

$$0 = |\mathbf{\Theta}_{Y_0,\xi}(Y_1)|^2 = \left[\left\langle \mathbf{A}, \mathbf{\Psi}(Y_1, Y_1) \right\rangle - 2(\mu, \mu) (Y_1, Y_1) \right] (Y_0, Y_0).$$

Here, we note that $Y_0 \neq 0$, because $L(\xi, Y_0)Y_1 \neq 0$. Hence, by the above equality and Lemma 19, we have $\langle \mathbf{\Psi}(Y_1, Y_1), \mathbf{A} \rangle = \langle \mathbf{B}, \mathbf{A} \rangle (Y_1, Y_1)$. On the other hand, by Proposition 12 (1) and (5b) we have $\langle \mathbf{\Psi}(Y_1, Y_1), \mathbf{B} \rangle = \langle \mathbf{B}, \mathbf{B} \rangle (Y_1, Y_1)$. Consequently, it follows that $\mathbf{\Psi}(Y_1, Y_1) = (Y_1, Y_1)\mathbf{B}$, because $\mathbf{\Psi}(Y_1, Y_1) \in \mathbf{R}\mathbf{A} + \mathbf{R}\mathbf{B}$ (see (4.4)). This proves (2).

We are now in a final position of the proof of Theorem 6. Let $Y_0 \in a + m_2$ $(Y_0 \neq 0)$. Then, by Lemma 20 (1) we have $\mathbf{Ker}(\Psi_{Y_0}) \supset \{Y'_0 \in a + m_2 \mid (Y_0, Y'_0) = 0\}$. This shows $\dim \mathbf{Ker}(\Psi_{Y_0}) \geq 3$ and hence Y_0 is singular with respect to Ψ (see Proposition 9 (1)). Accordingly, $a + m_2$ is a singular subspace. Similarly, by Lemma 20 (2) we can show that m_1 is also a singular subspace.

Now, let us put into Proposition 12 $U = a + m_2$ and $V = m_1$. Then, by Lemma 20 we know that the vectors **A** and **B** are not altered by this change of singular subspaces. Therefore, all the statements in Proposition 12 and the arguments developed after Proposition 12 are also true under our setting $U = a + m_2$ and $V = m_1$. Consequently, by Proposition 12 (1), (2), (3) and Lemma 19 we get the assertion (1) of Theorem 6. We also obtain by Proposition 14 and $C = (\mu, \mu)$ (see Lemma 19) the assertion (3) of Theorem 6.

Finally, we prove the assertion (2) of Theorem 6. Let $Y_2 \in m_2$ and $Y_1 \in m_1$. Then, since $C \neq 3(\mu, \mu)$ and $(\mu, Y_2) = 0$, we have

$$\mathbf{\Theta}_{Y_2,\mu}(Y_1) = \mathbf{\Psi}_{Y_2}(Y_1) + \frac{1}{(\mu,\mu)^2} \mathbf{\Psi}_{\mu}(L(\mu,Y_2)Y_1) = 0$$

(see Proposition 15). Here we note that the conditions $\mu \in U$ and $L(\mu, Y_2)Y_1 \in V$ in Proposition 15 have no significance, because $U = a + m_2$ and $V = m_1$. Accordingly, we obtain the assertion (2). This completes the proof of Theorem 6.

REFERENCES

- [1] Y. AGAOKA, Isometric immersions of SO(5), J. Math. Kyoto Univ. 24 (1984), 713-724.
- [2] Y. AGAOKA AND E. KANEDA, On local isometric immersions of Riemannian symmetric spaces, Tôhoku Math. J. 36 (1984), 107-140.
- [3] ______, An estimate on the codimension of local isometric imbeddings of compact Lie groups, Hiroshima Math. J. 24 (1994), 77–110.
- [4] ______, Local isometric imbeddings of symplectic groups, Geometriae Dedicata 71 (1998), 75–82.
- [5] ______, Strongly orthogonal subsets in root systems, Hokkaido Math. J. 31 (2002), 107-136.
- [6] ______, A lower bound for the curvature invariant p(G/K) associated with a Riemannian symmetric space G/K, Hokkaido Math. J. **33** (2004), 153–184.
- [7] _____, Local isometric imbeddings of $P^2(\mathbf{H})$ and $P^2(\mathbf{Cay})$, (to appear in Hokkaido Math. J.).
- [8] ______, Rigidity of the canonical isometric imbedding of the Cayley projective plane $P^2(\mathbf{Cay})$, (to appear in Hokkaido Math. J.).
- [9] _____, Local isometric imbeddings of Grassmann manifolds, (in preparation).
- [10] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York (1978).
- [11] S. Kobayashi, Isometric imbeddings of compact symmetric spaces, Tôhoku Math. J. 20 (1968), 21–25.
- [12] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry II, Interscience Publishers, New York (1969).

(Yoshio AGAOKA)

FACULTY OF INTEGRATED ARTS AND SCIENCES, HIROSHIMA UNIVERSITY

1-7-1 KAGAMIYAMA, HIGASHI-HIROSHIMA CITY, HIROSHIMA, 739-8521, JAPAN

 $E ext{-}mail\ address: agaoka@mis.hiroshima-u.ac.jp}$

(Eiji KANEDA)

FACULTY OF FOREIGN STUDIES, OSAKA UNIVERSITY OF FOREIGN STUDIES

8-1-1 Aomadani-Higashi, Minoo City, Osaka, 562-8558, Japan

E-mail address: kaneda@osaka-gaidai.ac.jp