Generating functions of
Littlewood-Richardson coefficients

Yoshio AGAOKA

Department of Mathematics, Faculty of Integrated Arts and Sciences
Hiroshima University, Higashi-Hiroshima 789-8521, Japan

e-mail address: agaoka@mis.hiroshima-u.ac.jp

Abstract

We give generating functions of the Littlewood-Richardson coefficients expressing
the product of two Schur functions for the cases {A1, -, ApH{p1} (m > 1) and
{A, A Hpa, pet (m < 4). These formulas also give generating functions ex-
pressing the number of irreducible components of {A\}{u} for these cases. As an
application, we give a new decomposition formula of the product {A1, Ao}{u1, 2},
expressed as a linear combination of some basic partitions whose coefficients move
in some polytopes. Several conjectures on the generating function for the case
{, - AmHp1, pe} (m > 5) and a simple formula expressing the Littlewood-
Richardson polynomial for the case {\} = {1, Ao}, {u} = {11, p2} are also stated.

1. Introduction.

The Littlewood-Richardson coefficient CKM is the coefficient of S, in the product of two
Schur function Sy and S, i.e., Sx\S, = > CKHS,,. (Hereafter, we use the classical notation
{A\Hn} instead of S\S,). This coeflicient is also equal to the multiplicity of V, in the
tensor product Vy ® V), where V) etc. means the irreducible representation space of the
general linear group GL(V) corresponding to the partition {A} etc. The coefficient cf,
also appears in many fields of mathematics such as combinatorics, representation theory,
algebraic geometry, etc. The value ¢, can be calculated by the Littlewood-Richardson
rule, which requires a combinatorial procedure on Young diagrams. Other several methods
to calculate ¢, are also known. For example, it is known that the coefficient 3, can be
expressed as a number of lattice points in some convex polytopes (cf. [5], [6], [12]). But
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in general it is almost impossible to express the individual value ¢, as a function of {A\},
{p} and {v}, because it requires many case by case examinations. (Exceptionally, some
special formulas are known. See [19], [22], [23], [24] etc.)

The purpose of this paper is to give several new formulas expressing the explicit values
of ¢§,. Our main tool is a “generating function”, which seems to be the most natural
language to describe the values cf,. One generating function contains all informations on
cy,'s when the depths of {A} and {u} are fixed. This phenomenon is surprising because
the Littlewood-Richardson rule itself is a combinatorial algorithm on Young diagrams, and
because this result means that the totality of such combinatorial calculations is condensed
into one generating function.

There are already several attempts to calculate generating functions of c§, such as
4], [17], etc. But it seems that the main interests of these papers are devoted to find
an efficient algorithm to calculate them, not directed to their explicit forms nor their
properties. But after some calculations, we are convinced that generating functions possess
several peculiar properties deserve to more attention. The main purpose of this paper is
to give their explicit expressions and to explain their properties, mainly on two types of
products {A1,- -, A} {pa} (m > 1) and {\g, -+, A Hpr, po} (m < 4) (Theorems 1 and
4). We also state several conjectures for the second type product for m > 5.

In addition, as one application of such generating functions, we give a new proof of the
result of Stembridge [26], characterizing the pair (A, i) such that the product {A}{p} is
multiplicity-free in case the depths of {A} and {u} < 2 (Theorem 8). For these {\} and
{p} we also give a quite simple formula expressing the Littlewood-Richardson polynomial
(Theorem 9).

2. The case {Ay, -, A\ H{}

In this section, we first consider the generating function for the product {A}{u} =
{A1, -+, AmH{ua}. In this case each component of the product {A}{pu} consists of parti-
tions of the form

{wy={I\ +m —[vlvi- o vm},

where |A| = A1+ -+ Ay, and |v| = v1 4 - - + vy, The decomposition can be calculated by
Pieri’s formula, which is a special case of the Littlewood-Richardson rule [25]. We express
the multiplicity of {v} in {A}{u} as c§, and consider the following generating function
expressing the decomposition of {A}{p}:

E v v v A A
Fm,l e C)\N xl 1 xm mql 1 qm m,rlﬂl‘
A

MV

Namely the coefficient of "' -+« 2" ¢ - -+ g ™r1#1 of this function is equal to the
multiplicity of {v'} in {A\}{u}. (In the case {u} = {p1}, the product {A\}{x} is multiplicity-
free and this coefficient is actually 0 or 1.) For fixed m, this single function contains all
informations on the decomposition of the product {A\}{p} for {A\} with depth< m and
{p} with depth< 1. We consider the problem expressing this generating function F,,; in
a simple form. The answer is given in the following theorem.
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Theorem 1. We have

1
Foni=
T (- ) - 210102) (1 — 2122010245) - (L — 21 T1qr - )
X (1 —=r)(1 —z1q1m1)(1 — 2122q1G27r1) -+ (L = Ty Ty -+ * GuT1)-
Note that if we put 1 = --- = z,,, = 1 into these functions, we obtain the generating

functions expressing the number of irreducible components of {A\}{u}.

Corollary 2. The number of irreducible components of {\i,--- , A }H{} is equal to
the coefficient of g™ -+ - g ™ 71"t in the following function:
1
(1= q)(1 = q192)(1 — q1G2q3) -+ (1 — q1- - * G
X(I—=r)(1—qri)(I —qiger1) - (1 —qu- - gmr1)-

Ezample. We consider the case m = 3. In this case the function Fj3; is expanded as:

F3:,=14+q +r+ q12 + 219192 + (1 + 56'1)6]17’1 + 7’12 + CI13 + 331(]12% + 2122919293
+ (1 + ZL’1)£]127"1 + (21 + z122)qrgor + (1 + l‘l)qﬂ’12 P

+ ($1$2 + T12973 + $12x2 + 1'12.T21'3)q12q2q37“12 e )

From the coefficients of g7 and ¢12¢aq3r12, we obtain the following decompositions:

{1H1} = {2} + {1"},
{217}{2} = {417} + {31°} + {321} + {2°1%}.

If we put x1 = o = 3 = 1 into Fj;, we obtain

L+q+rm+a?+qe+2ar +r° + @ + @20 + qugeqs + 2.1 + 2q1qory + 2qir 2
+ 7"13 + . + 8q13q22q37”14 + ...... .

Hence, for example, we know that the number of irreducible components of {321}{4} is 8.

We give another decomposition formula of {Aq,--- , A, }{u1} as a corollary of Theorem
1, which is similar to the decomposition formulas of plethysms stated in [1], [2].
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Corollary 3. We have the following decomposition formula:

{)‘h Agy - 7)‘m}{ul} =

Z [(a0+b1){1,0,---,0}+((11+bg){1,170,---,0}+ """
a1+61:)\1—)\2
az +by =X — A3 _|_(am71_|_bm){1,17... 7170}+am{171,... 71}

Am-1+bm1=Am1—Am
m +bm = A
ap+a1+---+am =
ai,bj > 0

Ezxample. We consider the case {421}{2}. In this case the set of non-negative integers
satisfying the conditions
a1+61:4—2:2,
a2+62:2—1:1,
as + bg = 1,
a0+a1+a2+a3:2

is given as follows:

ap a1 Qa2 as bl bg bg {l/}

2 0 0 02 1 1] {621}
1 0 0 12 1 0] {5212}
1 0 1 0]2 0 1] {522}
0 0 1 12 0 0]f{4221}
1 1 0 0|1 1 1] {531}
0 1 0 1]1 1 0] {4313}
0 1 1 01 0 1| {432}
0 2 0 0|0 1 1| {41}

And the right column gives the desired decomposition of {421}{2}.
Now we give a proof of Theorem 1 and Corollary 3.

Proof of Theorem 1. We fix {\} = {A1, Ao, , A} and {u} = {p1}. To each row
of the Young diagram {A} we add ao, a1, - ,a, new boxes with ap + -+ + ay, = 1
respectively as follows (this figure corresponds to the case m = 3).

From the Littlewood-Richardson rule the integers a; must satisfy the following condi-
tions:

ap <A1 — Ay,
as < Ay — As,
2y
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T :

Then we have

Fm,l — E x1A2+a1x2>\3+a2 L xm—l)\m+am_1$mamq1/\1QQ)\2 . qumT1‘u17

Aauyai

where a; move in the above range (2.1) and satisfy ag + - -+ + a,, = p1. We here define
non-negative integers b; by

a1+ b1 = A — Ao,

az + by = A2 — A,

Ap—1 + bm—l - )\m—l - )\ma
A+ by = A

Then we have
M = ay+ -+ Gt by by,
No= g+ + am+ byt + by,
)\m—l :am—1+am+bm—1+bm-/
Am = Qm + by

Hence we have

Fm71 — E x1a1++am+b2++bmx202++am+b3++bm e xm_lam—1+am+bml.ma/m
aq,b;
% q1a1+~~~+am+b1+~~-+bmq2a2+~~~+am+b2+~~-+bm . _qmam+bmrla0+-~+am
_ by b2 bz ., bm—1
= q1 (1"16]1%) (561332%%(]3) (931 Trp—2q1 qm—1)
a;,b;

X (331 o Tp—141 7 Qm)bmﬁao ($1Q17’1)a1($1$2Q1QQT1)a2 T

X ('Tl P xm_lql .. qm_lrl)amfl(l-l e xmql P qm/rl)am
1

(1 —q1)(1 —21q192) (1 — 2122q192q3) - - (1 — 21+ - Tpm1qa -+ @)
X (1=7r1)(I —z1qar1)(1 — 2122q1gor1) - -+ (L — @1+ - Q1 - - @)
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q.e.d.
Proof of Corollary 3. We consider the equality in the above proof:
Fpry = Z gt tamtbatedbm g agtetam by tedbm g Gme1tGmtbm g am
% q1a1+---+am+b1+-~~+bmq2a2+---+am+b2+-~~+bm L. qmam+bmr1a0+a1"'+am‘
This term corresponds to the partition
{*7a1+...+am+bz+...+bm’a2+...+am+bg+...+bm7 ...... ;am—1+am+bm;am}

in the product {Ay,..., A\ Hpi}, where

Al=ar++ am+ b+ + b,
Ay =ag+ -+ am+ba+ -+ bn,
Am:am+bm7

M1 = a0+ ar+ -+ Q.

It is easy to see that the value of * in the above term is equal to ag+ a1 +--- 4+ am + b1 +
-+« 4+ by,and hence Corollary 3 follows immediately from these expressions. q.e.d.

3. The case {\1, -, A\ Hpa, po}-

Next, in this section we consider the case {A\}{u} = {1, -+, A }{pa, u2}. In this case
the tensor product {A\}{u} consists of terms of the form {v} = {|\|+|p|—|v|, v1, - . Vm+1},
where |A\| = A1+ -+ A, || = 1 + p2 and |v| = v1 + -+ - + Vg1, As in §2; we express
the multiplicity of {v} in {A\}{u} as ¢}, and consider the generating function

§ v v v A A
Fm,2 — C)\;L 351 1 .. 'xm—l-l m+1q1 1., qm mT1H1T2“2.

AV

Namely the coefficient of 2% -+ Tt "™ 1M -+ - @ ™T1*119H2 is equal to the multiplicity

of {v} in {A}{u}, which is not in general multiplicity-free in this case. We consider the
problem expressing this generating function as a ratio of two polynomials. For small m
(< 4) we can calculate F}, 2 by a similar method as in the proof of Theorem 1 (see Theorem
4 below). But for general m (> 5) it is still undetermined, and in the next section we
state several conjectures on the form of £}, o.

The numerator of F, 2 is not so simple as that of F),;, and to express it, we first
introduce one notation. Let aq, as, -+, a,, be integers satisfying a; > as > -+ > a,, > 0.
We define a polynomial f,...q,, by

fa1~--am - Z (xlql)bl T (xmqm)bm

bi,,bm
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where the exponents by > --- > b,,, > 0 move in the range such that the following two sets
coincide:

{bl - 627 b2 - b37 e 7bm71 - bmybm} - {ala ag,:-* ,Am-1, a’m}'

For example, we have

fo11 = (I1Q1)4(5€2<I2)2($3qg) + ($1Q1)4(I2QQ)3($SQ3) + ($1Q1)4($2Q2)3($SQ3 2

) )
Jorio = (21q1)"(2202)* (23g3) + (2101)* (2202)*(2343) (24qs) + (21¢1) " (2202)* (23q5)*(€4qa)

+ (3516]1)4(@%)4(%3(]3) (21qa) + ($1Q1)4(w2QQ)3(1?3Q3)($4q4) + (71q1) (1'2Q2)3(353QB)
+ (2101) " (2202) (£303)" (24q4) + (2101)" (2242)" (2303)" (24qa) + (2101) " (2242)*(23¢3)?
+(3131Q1)4(~T2C]2)4(903<]3)3(354%) (le1)4(332Q2)3(1'3%)3(954%)2

+ ($1(J1)4($2C]2)3(I3Q3)2($4Q4)2

Note that the exponent of z1¢; is always constant, which is equal to the sum b, = > a;.

Theorem 4. For m =1 ~ 4, the generating function F,, o can be expressed as a ratio
of two polynomials
fTiq, - T, 71, 72)
9T, Tmt1, 1y Qs T T2)

Here the numerator f is expressed as follows in terms of fa,...a,,:

m=1:f=1,

m=2:f=1— fur’r,

m=3:f=1—(fuo+ f111)7"127"2 + f1117’137“2 — f1117"127‘22 + (fin + f211)7“137“22
- f2227“15?“23,

m=4:f=1- (f1100 + f1110)7"127‘2 + (f1110 + f1111)7"137"2 - f11117"147’2 — (f1110
+ fin)ri®re® + (fiwo + for1o 4 5f1111 + for)r®ro® — (finn + fornn)ratre®
+ (fi1 + f2111)7“137’23 — (fi111 + forr1 + farn + f2211)7’147“23 — (fa220 + fo221
+ fozao + fa211)71°12° + (fazor + foo02)71%m2° — (faoo1 + f2222)7“157“24 + (fa221
+ f3221 + D fo202 + f3222)7’167’24 — (fa222 + f3222)7’177’24 — f22227"157’25 + (faz2o

+ f3222)7’167’25 — (f3222 + f3322)7’177’25 + f3333T19T26a

and the denominator g is given by

g(l‘l:"':xm—Fth"'7QM7r17T2): H (1—.Tl"'l'iql"'qj"l"l---’l"k)
0<i<m+1
0<j<m
0<k<2
j+k=i+1

X H {1 - (z11)* - (2:¢;)*(Tis1qisn) - - - (25q5)T172}

2<i+2<5<m
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Ezxample. In the case m = 2, the above generating function is equal to

1 — z1%22q1%qor1°r2
(1 =q)(1 =r)(I = 21q1q2) (1 — 21q171) (1 — 217172) (1 — T122q1G271)
X (1 — z1z2q1m172) (1 — 122q1q2r172) (1 — 212923G1G2T172)
=l+qa+nrn+a¢’+rae+ (v + Dari+-- -

3 3 2 .2 2 2 2 3 2
+ (21722 + 217 + 21702 4 2170203 + 221722 + 217 + 212T2%3 + T1T2) 17 @17 T2

F22:

)

The coefficient, of q;°gar1®ry implies that {31}{21} decomposes into
{321} + {43} + {32°} + {3217} + 2{421} + {52} + {41’} + {51%}.
In the case m = 3, we put 1 = --- = x4 = 1. Then we have

f=1- (912% + (J1QCI2Q3 + Q12Q2QCI3 + Q1SQ22(]3)7"12?"2 + Q13Q22qg7’137"2 - (J13Q2QQ3T12T22
+ (Q136]22(J3 + a1 + it + Q14Q23Q32)T137‘22 — 1% 431",
g=1-=q)1=7)(1 = qq)(1 —aqr)(l —rr2)(1 — q1q2q3)(1 — q1q271)

X (1 —q1rim2) (1 — q1g2g3r1) (1 — q1gar1m2)*(1 — q1gaqsri72)*(1 — 1% qagsrira).

And by using computers, we know that the coefficient of ¢1%ga*qs®r1*re? in f/g is 123,
which is just equal to the number of irreducible components of {642}{42}.

In the case m = 4, the numerator f stated in Theorem 4 is a little lengthy, and it
actually consists of 144 monomials if we express it directly as a polynomial of xq, - , x4,

qi,- " ,44, T1, T2.

Before proceeding to the proof of Theorem 4, we review some relations to the previously
known results. Similar generating functions are already stated in [17] and [4]. In [17; p.178§]
Patera and Sharp gave a formula on the generating function for SU(2) Clebsch-Gordan
series:

1
(1— A A) (1 — A A)(1— A Ay

This is essentially equal to the function £} given in Theorem 1. In fact we have only
to change the variables by the rule ¢ = A;A, r1 = AA and 7, = 1/A2% (See also [4;
p.7612].) Similarly, the generating function for SU(3) Clebsch-Gordan series stated in [17;
p.178]

1
(1— A A) (1 — BB)(1 — A3A)(1 — BoB)(1 — A1 Ba)(1 — BiAy)

y 1 N B1B;A
1— AlAgB 1-— BlBgA
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is a special case of our generating function Fha. (See also [4; p.7634].) In this case, we
substitute

AB, AB, B 1
A r1=AA, o= A, A2 =

Q1= A1A, g2 =

into F5o. Then it just coincides with the above. (Actually, since the formula in [17] treats
the group SU(3), it gives the multiplicity of {|\| + |u| — ||, v1, 2,0} in {1, Ao} {p1, 2}
Our formula on the function F59 may be considered as a generalization of their result in
[17] to more general v3 # 0 case.)

Proof of Theorem 4. We here give a proof for the case m = 3. Other cases can be
treated in the same way, and we leave its examination to the readers.

We consider the Young diagram corresponding to the partition {1, A2, As}. First, we
add ag, ai, as, az (ap + -+ + az = p1) new boxes to each row, and next add by, b, bs,
by (by + -+ + by = pa) boxes to the second ~ the fifth row under the rule of Littlewood-
Richardson as follows (b; boxes are represented by circles in the figure):

A1 EI:I agp
Ao OO a by
A3 O as b
O Q as b3
O by

The Littlewood-Richardson rule can be expressed as the following conditions:

p

ap + a1+ ag + ag = U1,

a1 < A\ — Ao,
az < Ay — Az,
as S )\37

b1 + by + b3 + by = pa,
a; + by + Ay < Ay + ag,
(3.1) as + by + A3 < Ay +ay,
az + bz < Az + ag,
by < as,
by < ay,
by + b2 < ap + a,
b1+b2+b3§a0+a1+a2,
{ 01+ b2+ b3+ by <ag+ai+az+as.
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Here we put
M — A =ai+ec,
Ay — A3 = az + ¢,
A3 = a3+ cs,
asz = by + cy,
g = b1 -+ cs.

Then from the above conditions (3.1) we have clearly ¢; > 0. After some calculations we
know that the conditions (3.1) can be summarized to the following (3.2) and (3.3):

( )\1:a1+a2+b4+01+02+63+c4,
A2:a2+b4+02+03+c4,

A3 = by +c3 + ¢y,

(3-2) M1 =a1 + as+ by + by + ¢4 + 5,

fo = by + by + b3 + b,

az = by + ¢4,

ag = by + cs.

b2§a1+027
b3§a2+03,
b2§a1+057
b2+b3§a1+a2+c5.

(3.3)

Then the generating function Fs5 can be expressed as follows:

Fyo = E m1>\2+a1 +b1 x2>\3+a2+bzx3a3+b3x4b4 q1>\1 q2>\2q3>\3T1#1 roh?
— E M +az+b1+batca +63+C4$2a2+b2 +b4+03+64w3b3+b4+04$4b4 q1a1+a2+b4+01 +eateztea

% q2a2 +ba+ca+cz+cy q354+63 +ca r

= Z (9131Q17"1)a1 (I1$2Q1Q2T1)a2 ($17“17“2)b1 (3527“2)62 ($3T2)b3 ($1$2I3$4Q1QQQST1T2)b4

X 1M (219192) 2 (2122q19293) ® (T12223q1G2q371) 117,

1 ai1+az+bi+bs+cates 7,2b1 +ba+b3+by

where parameters move in the range (3.3). Since no conditions are imposed on four
parameters by, by, c; and ¢y, we can first take out the term

1

(1 — ql)(l — $17’17"2)(1 — I1$2I3Q1QQQ3T’1)(1 — $1£E2$3£E4Q1Q2Q3T17’2)’

(3.4)
and the remaining terms are expressed as

(3.5) Z (z1q171) " (2122G1G2m1) " (w2712) " (2372) " (210102) ™ (T122G10203) 71

In the following, we calculate the sum (3.5) under the conditions (3.3) by dividing into
five cases. (Note that all parameters are non-negative.)
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(i) The case ba < a; and bs < axs.

In this case, the conditions (3.3) are automatically satistied. We put a; = by+dy, as =
bs + ds (d; > 0), and substitute them into (3.5). Then the expression (3.5) corresponding
to this part is

(3.6)
Z (z1q1m1) 2T (212291 qom1) T2 (war2) ™ (2372) ™ (210102) ™ (2122416203 ) P T1
= Z (2122q17172) " (212223¢1Gar172) " (7101G2) 2 (2172G1G2q3) 11 (210171 )

X ($1I2Q1Q2T1)d2
1

(1 - 7"1)(1 - $1Q1Q2)(1 - IlQlTl)(l - $1$2Q1Q2Q3)(1 - $1$QQ1C]2T1)
X (1 — $1£E2Q17‘1T2)(1 — I1$2$3Q1QQT1T2).

(ii) The case by < aq, b3 > as+ 1 and as + ¢5 > bs.
In this case we put a; = b + di, b3 = a2 + d2 + 1. Then the remaining conditions are

032d2+17
C5Zd2+1.

Hence we put ¢z = da+ds+1 and ¢5 = da+dy+ 1. Then the expression (3.5) corresponding
to this part is

(3.7)
Z (I1Q1T1)b2+d1 (3?151?2%6127“1)(12 (902T2)b2 ($372)a2+d2+1(ﬂ?1Q1Q2)62 ($1$2Q1Q2Q3)d2+d3+1

X T1d2 +ds+1

- Z T1T2T3q1G2q37 172 (T1T2T3q1gor172)  (T122q1m172) 2 (21G142)? (21q171)
X (2122230102q37172) ® (2122010243) P11 ™
T1T223G1G24G37172
(1 — 7’1)(1 — $1CI1C]2)(1 — :U1(I17“1)(1 — x1$2q1q2q3)(1 — x1x2q17’1r2)
X (1 — x12973G1G2r172) (1 — T12223G102G3T17T2)-

(lll) The case b2 S as, bg 2 as + 1 and as + c5 + 1 S bg.
In this case we put a; = bo+d;, b = as+ds+1. Then from the condition as+c5+1 < b,
we have dy > ¢5. We put dy = ¢5+ ds. Then we have b3 = as + c5 + d3+ 1. The remaining

conditions are
c3 > c5+ds+ 1,
dy > ds + 1.

Hence we put c3 = c5+ds+ds+1 and d; = d3+ds+1. And thus we have a; = by+ds+ds+1,
b3 = as+ ¢5 +ds + 1 and ¢3 = ¢5 + d3 + dy + 1. Then the expression (3.5) corresponding
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to this part is
(3.8)

Z (5151(]17"1)bﬁd?ﬂrd{;ﬂ(96’13026]16]2?”1)a2 (952?“2)b2 ($3T2)a2+65+d3+1($1Q192)C2

cs+ds+da+1,,. ¢
X (2172q1G2q3) T BT TS

2 2 b
= E X1 " T2T3q1 Q2C]37"17“2($1$2$3Q1QQT1T2)Q2(551352%7"17"2) 2(551Q1Q2)82

X ($1$2$3Q1Q2Q3T1T2)05 ($12$2$3Q1QQ2Q3T172)d3 ($1$2Q1Q2Q3)d4 ($1Q17’1)d5
$12I2$3(11QQ2C]3T1T2
(I —21q1¢2) (1 — z1qa71) (1 — 2122q142q3) (1 — 21221 7172) (1 — 212223G1G2T172)

X (1 - $1I2$3Q1q2q?>7“17“2)(1 - I12$2I3Q12q2Q3T1T2)-

(iv) The case by > a1 + 1 and ag > bs.
In this case we put by = ay + d; + 1, as = b3 + ds. Then the remaining conditions are

C2 Z dl + 17

Cr Z dl + 1.
And we put co = d; +d3+1 and ¢5 = dy +dy+ 1. Then the expression (3.5) corresponding
to this part is
(3.9)

Z (51516]17“1)0L1 (351962916]27"1)b3+d2 ($2T2)a1+d1+1($37"2)b3 (551(]1Q2)d1+d3+1

cs,. di+da+1
X (T122¢1G2q3) P r1 ™M

= Z 1'19726]1%7“1?“2(1'15626]17"17“2)a1($1I2$3Q1Q2T1T2)b3 ($1$QQ1Q2Q3)C3 (I1$2Q1Q27"17"2)d1

X (2122q1¢2m1) ? (219162) Pr ™

_ T17241G2T1T2
(1 =71)(1 = 21q1¢2) (1 — 2172q1G2G3) (1 — T172q1G2r1) (1 — T172q17172)
X (1 — $1$QQ1QQT17’2)(1 — $1£E2$3Q1Q27’17’2).

(v) The case by > a1 + 1 and bs > as + 1.
In this case we put bo = a1 +dy + 1, b3 = as + do + 1. Then the remaining conditions

are
C2 Z dl + 17

C3Zd2+17
052d1+17
cs > dy +dg + 2.

Weput co=dy+d3+1,c3=dy+ds+ 1 and ¢5 = dy + d5 + 1. Then there remains one
condition ds > do + 1, and we put ds = ds + dg + 1. Thus we have

by =ay +d; + 1,
63:a2+d2+1,
co=dy +ds+1,
63:d2+d4+1,

C5:d1—|—d2—|—d6—|—2.
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Then the expression (3.5) corresponding to this part is

(3.10)

Z ($1ql7“1)al (1'11'26116127“1)@2 (xQTQ)a1+d1+1 ($3T2)a2+d2+1 (l,lqqu)d1+d3+1

dotda+1 . dy+dotds+2
X (x122q1Gags) AT TR

= Z 21229203012 o2 q3r1 2o (21 20q1 1 70) ™ (2102031 Gor170) 2 (21021 Gor12)
X (217273q1G2q37172) 2 (71q1G2) ™ (21721 g2q3) P11 %
$12$22$3Q1QQ2QCI3T127"22
(1 =7)(1 = 21q1¢2) (1 — 71721G2G3) (1 — T1702q17172) (1 — 2172q1G27172)
X (1 = 212273q1q2m172) (1 — 2122731G2G37172).

Finally we add the expressions (3.6) ~ (3.10) and multiply (3.4). Then after some
calculations we have F39 = f/g where

f=1— (2’22012 + 21°227301°q2q3 + 1170271301702 q3 + T1° 02 w301 42> g3) 1 P
+ 212 02° 03¢0 ° 22 qar1 Pre — 21 0%23q1 P g2 gari Pre® + (3513352256‘3{113%2(]3
+ o' w2 s + w1 wt s Yo’ as + 1t st g P g P
- 3516502451?32(]16Q24CI327“157’237

g=(1—=q)(1 =r1)(1 —21q1q2)(1 — z1qu71)(1 — 217172) (1 — 217201G243)
X (1 = 2122q1g27m1) (1 — m122q17172) (1 — 212273q1G2G371 ) (1 — 217273q1GaT172)
X (1 — 21222324G1Gq2q37172) (1 — T122q1qor172) (1 — 212223G102q37172)

X (1— $12$2$3Q1QCI2<]37“17"2)-

By definition we have

2 2 2 2 2.2 2 9
fi10 = 1°22q17°q2 + T17T23¢1°q2q3 + T17T2"T3¢17q27q3,

3.2 3 92
finn = 1"z 3¢ 27 g3,

4.2 4 2 4.3 43 4.3.9 4 3 9
fo11 = 17 22" T3q1 72 Q3 + 172" T3q1 " Q2 q3 + T1 T2 T3 1T 2 ¢37,

Jao2 = ﬂl?16~”5245C32Q1GQ246]327
and hence
f=1=(fi0+ f111)7“12?“2 + f111?“137“2 — f1117’127"22 + (fin + f211)7“137'22 - f222?"157“23-
Therefore we obtain the desired expression for the case m = 3. q.e.d.

Concerning the decomposition of {1, Ao }{u1, po}, an explicit decomposition formula
is already given in Remmel-Whitehead [22]. As a corollary of Theorem 4, we give the
following quite simple new decomposition formula that resembles the one in Corollary 3.
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Corollary 5. The following decomposition formula holds:

{A A, po} =

3 | (a+0){1,0,0,0} + (c+ d+){1,1,0,0} + (f +9){1,1,1,0}
a+d+g:)\17)\2
ctfthti=i +h{2,1,1,0} +i{1,1,1,1} |.

b+d+f=pu —pe
et+g+h+i=u
a”bic’d’e7f7gih7i20
dh =0

Ezample. We consider the case {32}{21}. In this case the set of integers satisfying the
conditions
(a+d+g=3-2=1,
c+f+h+i=2
btd+f=2-1=1,
etg+h+i=1,
a7b7c7d767f7g7h77: Z 07
dh =0

is given as follows:

{v}
{53}
{431}
{521}

{4212}
{£}
{317}
(32}
{431}
{422}
(3221}

OO~ KFHF FNF FHDNDNO
OO OO R, OOOOoOX
OO R OO, OO OoHH®
—_— == = O OO OO O
OO, OO OO R OoOW
OH OO OO OO
_— OO O =, O = OOo Qo

—= = O OO == O R
O O OO OO - ==

Hence we have the decomposition

{32}{21} = {53} + {521} + {4} + 2{431} + {42%} + {421°} + {3%2} + {3°1°} + {32°1}

Proof of Corollary 5. We follow a similar method as in the proof of Corollary 3. First,
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we have
2 2 2
1 —z1*x2q1°qar1°r2

(1 =q)(1 =7r)(1 = 210102)(1 = w1qu71) (1 — 217172) (1 — 2172q1G271)
X (1 —z122q17m172) (1 — 2122G1G21172) (1 — 212223G1G2T172)

= Z Q1a7’1b($1Q1Q2)C($1Q1T1)d($17“17’2)e($1£IJ2Q1Q27’1)f(501$2Q17’17“2)g

Fyo =

X ($1$2Q1QQT1T2)h($1$2$3Q1Q2T17“2)i
- Z Q1GT1b($1Q1CI2)C($1Q1T’1)d($1T1T2)e($1$2Q1Q27’1)f($1372Q17“17’2)g

i

h 2 2 2
X (2122q1q27172)" (T12223G192T172) (217 22¢1 7 q217T2)
_ Z x1c+d+e+f+g+h+ix2f+g+h+i a+c+d+f+g+h+iq26+f+h+irlb+d+e+f+g+h+ir26+g+h+i

atctd+f+gt+hti+2

z3'q1

c+d+e+ fHg+h+i+2 . fHgthtitl e+ f+h+itl
_§ T f+g ng g 0 f

i
T3 q1 q
% Tlb+d+e+f+g+h+2+2T26+g+h+z+1‘

The first line in the last expression corresponds to the partition
{s,c+d+e+f+g+h+if+g+h+i,i}

in {1, Mo Hp, o} = {atctrd+f+g+hti,c+f+h+it{b+d+e+f+g+h+ietg+h+i}.
It is easy to see that the above x part is equal to a+b+c+d+e+ f+ g+ 2h + 1. Hence,
the first line is equal to

3 | (a+0){1,0,0,0} + (c+ d+){1,1,0,0} + (f +){1,1,1,0}
a+d+g:)\1—)\2
ctfthti=k +h{2,1,1,0} +i{1,1,1,1} |.

btd+f=pm—pe
etg+h+i=p
a/’bic’d’e’f7gih)i20

In the similar way, the second line corresponds to the partitions
{a+btc+dret+f+g+2h+i+3.c+d+e+f+g+h+i+2 f+g+h+i+1,i}

in {\, o e} ={at+ctd+frg+h+it+2ctf+h+it1}{b+rd+et+ft+g+
h+i+2,e+g+h+i+1}. In this case, the above partition can be expressed as
(a+0){1,0,0,0} + (c+d+e){1,1,0,0} + (f + ¢){1,1,1,0}
+ h{2,1,1,0} +i{1,1,1,1} + {3,2,1,0}
= (a+b){1,0,0,0} + (c+ (d+ 1) +e){1,1,0,0} + (f + g){1,1,1,0}
+(h+1){2,1,1,0} +i{1,1,1,1}.
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In addition, we have
a+(d+1)+g=X— Ao,
ctf+(h+1)+i=N,
b+ (d+ 1)+ f = — o,
etg+(h+1)+i=ps.

Hence, by changing the variables d, h, we know that the second line is equal to

3 | (@+0){1,0,0,0} + (c+d+e){1,1,0,0} + (f +¢){1,1,1,0}
a—|—d+g:)\1—)\2
ctfthti= +h{2,1,1,0} +i{1,1,1,1} |.

b+d+ f=p —pe
etg+h+i=p
a7b7c’e7f7g7?:207 d7h21

Subtracting this expression from the first line, we obtain the desired result. q.e.d.

Remark. From Corollary 5, we know that the number of irreducible components of
{1, Ao H{pa, g2} is equal to the number of lattice points in R with coordinate (d, f, g, h, 1)
satisfying the following conditions:

(d+g <A\ — X,
fH+h+i< A,
d+ f < p1 — po,
g+h+1i< s,
d,f,g,h,i >0,

| dn=0.

In general it is hard to express this number explicitly as a polynomial of A\; and p;. As
one example, in case 0 < po < Ay < g — po < g < A1 — Ao, we can directly verify that
the number of irreducible components of {1, Ao }{u1, 2} is equal to

oo (71 () (7)) (1)

4. Conjectures.

Generation functions stated in Theorem 4 possess several properties. In this section
we summarize these properties in the form of conjectures on F,, 2 (Conjecture 1), and
in addition, give the explicit conjectural expression of the quite lengthy next generating
function F5o (Conjecture 2). We use the same notations as in the previous section.

Conjecture 1. [, 5 can be expressed as a ratio of two polynomials:

f(ﬂ?ﬂh,'" ;mem7T17T2)

g(l'l, T, 41,0 0 7qm7T1ﬂr2)
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Here, the denominator g is given by

91, Ty, Qs Gy T, T) = H (1 =21 2iqr---qjr1 -+ 7x)
0<i<m+1
0<j<m
0<k<2
jtk=i+1
X H {1 = (2201)% - (:q:)*(®i41Gi1) - - (25q5) 172}
2<i+2<j<m
and the numerator f can be expressed as a linear combination of fu,..q,1°12? (a1 > -+ >

am > 0 and p > q > 0) with integer coefficients. The numerator f satisfies the following
properties:
(i) If the term fao,..q, T1PT2? appears in f, then the exponent (p,q) moves in the range

ogpgw’ qugm(n;l)’ d<m— 1.
. , (m—1)(m—2)
max {p,p+q = (m =1} < a; <min {p+g,p+ =g}

=1

(i) The coefficients of r° and ro* in f are given by

m—1
1— ~D*(f1. 000+ fioo100) e — (=)™ fr T,
B e g

(iii) The coefficient of T1%ra® in f is given by

— .0 T+ o) riire’.
(f1110 o + fii1p 0) 1772

m—3 m—4

(m—1)(m+2) m(m—1)

(iv) The coefficient of r 2 ro 2, which is the last term of f, is given by

m(m—1) (m—1)(m+2) m(m—1)
(—1) 2 fmfl,n-,mflrl 2 ro 2
N’

m

(v) The following reciprocal property holds:

f('qula S Tmlm, T, TQ)
m(m—1) _ m— m— m—
= (1) (210) ™" (@22) ™V - (@m1Gnm1) 2D (200G
(m—1)(m+2)  m(m—1) ( 1 1 1 1 )
X T 2 T2 2 f R s oy ).
141 ITmdm T1 T2

(vi) If we set x,,qm = 0 in f, then the polynomial f(z1qr, -+, Tm—1¢m-1,0,71,72) gives
the numerator of F,_1 o.
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Remark that the parameter x,,;; appears only in the denominator of £}, .. If we put
re = 0 in F), 2, then we just obtain the generating function £}, ; appeared in Theorem
1. Unfortunately, the numerator f cannot be uniquely characterized by only the above
properties.

It is easy to see that the reciprocal property (v) in Conjecture 1 is equivalent to
say that the term kf,,..q,, 71 r2? (k € Z) appears in the numerator f if and only if

m(m—1) (m—1)(m+2) m(m—1) .
the term (_1) 2 kf(m—l)—am,(m—l)—am_l,---,(mfl)falrl 2 P ro 2 1 appears f

(Remark that fo..o = 1.)

We can easily see that Conjecture 1 actually holds for the case m < 4.

For the next case m = 5, it seems hard to obtain the explicit formula by the method
stated in the proof of Theorem 4. But by using computers, we now arrive at the following
conjecture.

Conjecture 2. In case m = 5, the numerator of the generating function is given as
follows:

fxiqu, -+ , @505, 71,72) =
1 — (f11000 + f11100)7"127’2 + (f11100 + f11110)7"137’2 — (fi110 + f11111)?"147’2 + finnri’re
— (f11100 + fi1110)71%r2® + (fi1100 + for100 + 5 11110 + for110 + 5f11111)71°m2>
— (f11110 + far110 + 6 fr1111 + fornn)ri're® + (fiinnn + far11)m1°r2® + (fianio + far1i0
+5 fiinnn + forn11)r1°r2® — (fiin10 + Sforn10 + 6 fi1111 + fariio + fa2110 + 6f21111 + fa1111
+ foor11)r1're® 4 (fi1111 — faza00 — fo2110 — for111 + far111 — fazzt0 — faz111 — faze20
— f22211)71°12% + (fa210 + 202111 + fo20 + 220211 + f22001)71%m2° — (faro11 + faz021)
iy — (firin + forrnn + fannn + f22111)7’147"24 + (fi1111 + forir + fari1 — fa210
— fa2111 + fannnn + faonnn — fazeoo — forans — fazoo1)riPra® 4 (fazor0 + 2 22111 + faz210
+ 2fa0111 + D faoan0 + 10 faoo11 + faoazo + 232011 + 10 fanoor + faoaor + 5 fazon)r1 %o
— (faz220 + 2f29011 + fazz20 + 232011 + 1020091 + 2 f32021 + 10 fanana + fanaoe)r1 To
+ (fa2221 + fa2001 + 5 foozoo + f32222)7’187’24 — (f22220 + fa2o11 + fozom1 + f22222)7’157"25
+ (fa2000 + 222011 + f32000 + 232011 + 10 fazm01 + 232001 + 10 fanazo + faoean)r1%72”
— (f22211 + fa2200 + 232011 + 10 faz001 + fazo11 + f33220 + 233211 + 10 f32221 + 30 foz222
+ fio221 + 233001 + 10 f3000 + f33020)71 70 + (fazoor + 10 f20220 + 230921 + 10 fano0o
+ 2 f33001 + fao01 + 2f33000 + f42222)7“187"25 — (fa222 + f33200 + f32000 + f22222)7“197“25
+ (f32222 + f2001 + D fonozs + f22001)11%12° — (fazaz2 + 2 f33002 + faooo1 + 2 f330m
+ 10 f3p002 + 232001 + 10 fan092 + faooo1)71 2% + (fazaze + 233300 + fazeo1 + 233321
+ 5 fa2200 + 10 f33200 + fuzoo1 + 233221 + 10 f3o220 + f32001 + 5 fo2002)r1°m2° + (f33333
+ fass32 + fasss1 — fuseoo — fassez + fasss0 + fasso1r — fazoon — fasooo — fa00)71 72"
— (f33333 + fa332 + fasss1 + [33322)r1"0m2% — (fasoon + fazo00)r1 2" + (1022 + 233300
+ fuz222 + 233002 + fa2200)71°r2" + (fassss — faazze — fassoo — fassae + fasszr — fasoon
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— fass22 — fazo2o — [a3222)r1°r2" — (fassss + fasssz + 6 fsssss + fasssr + fazsoz + 6 fazane
+ fass31 + faso2)T1'0r2" 4+ (fasass + fasss2 + 5fassss + fasssz)r 2" + (fasass + fazane)
r1712% — (fazsss + fisase + 6 f3333 + faszso)T1 'r2® + (fuasss + faazso + D fassss + fuzsae
+ 5f33333)7"1117"28 — (faa333 + f43333)7’1127"28 - f333337’197“29 — (faz333 + f33333)7“1107’29

+ (faazzs + faz333)m11 10 — (faaass + faazss)Ti'2re” + faaaaar: o™

This numerator actually consists of 3700 monomials if we express it as a polynomial of
x;, q; and r;. The coefficients appeared in this numerator are limited to 1, 2, 5, 6, 10,
30, and they may have some combinatorial meaning. It can be directly verified that the
numerator f in this conjecture satisfies all properties stated in Conjecture 1.

5. Littlewood-Richardson polynomials.

We fix three partitions {A}, {u}, {v} such that |A| + |¢| = |v|. Then it is known
that for non-negative integers N, the value cj§ ~p can be expressed as a polynomial of
N, and this polynomial is now called the Littlewood-Richardson polynomial (cf. [9], [18]).
By using the method of hives (c¢f. Buch [6], or Knutson-Tao [12]), we can easily see that
the degree of the Littlewood-Richardson polynomial is at most (m — 1)(n — 1) for the
case {A\} = { A\, -, A} and {p} = {u1, -, un}. (In fact in this case, the Littlewood-
Richardson coefficient cf, is equal to the number of lattice points in some (m —1)(n —1)-
dimensional convex polytope whose boundaries are determined by the conditions on hives.)
In this section, we give a generating function of the Littlewood-Richardson polynomial for
the case {\} = {1, A2} and {u} = {1, 2}, as an application of Theorem 4.

First we define a polynomial f} (N) by

) = { g (G2

And next, define a generating function LRy (N) by

LR272(N) — Z f/l\/M(N) xluzx2usl.3u4ql>\1q2>\27,1#1 712#2‘
A ={A1, A2}
{u} = {p1, pa}
{v} ={vi,v2,v3, 14}
[+ [p] = |v]

Namely, the coefficient of z1"2z9"3 25" q1 M g2 11" 752 in LR55(N) gives the Littlewood-
Richardson polynomial for {A\} = {\1, A2}, {u} = {1, 2} and {v} = {v1,--- ,v4}. Then
we have the following theorem.

Theorem 6. The generating function LRyo(N) is given by the following form:

(1 — 21222q12q2r1°r2) (1 + 21%22¢1 2 qar1 *r2(N — 1))
(1 =q)(1 —=r)(1 = 21q102) (1 — 21q171) (1 — 217172) (1 — 2122q1G271)
X (1 — ZL’l.qul’I"l?"Q)(l — .Tl.TQQ1QQT'1T2)(1 — 56'1332$3Q1Q2?"17’2).
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As an example, by using computers we know that the coefficient of z,7223¢1"ga*r1 %723

in LRy2(N) is 3N + 1, which gives the Littlewood-Richardson polynomial for the case
{\} = {74}, {u} = {63} and {v} = {10,73}. Note that if we put N = 1 into LRy2(N),
then we just obtain the generating function F,5 in Theorem 4.

Since the degree of the Littlewood-Richardson polynomial is at most 1 for the case
{A} = {1, A2} and {p} = {u1, po}, it suffices to know the function LRy2(0) in order to
prove Theorem 6. In fact, using the function Fyo, LR22(IN) can be expressed as

LRy5(N) = (Fao — LR22(0))N + LR25(0).
The generating function LRy 2(0) may be considered as a support function of &, Namely,
CK# > 0 <= the term z,"222"* 23" ¢ 227111 19"2 appears in LR55(0).

(By definition, the coefficient of each term in LR35(0) is always 1.) The generating
function LR, 2(0) is given in the following form. Theorem 6 follows immediately from this
proposition.

Proposition 7.

(1— $12$2Q1QQ2T12T2)2
(I —q)(1 —r)(1 —21q1g2) (1 — z1q171)(L — zam172) (1 — 21221 G271)
X (1 — CEl.TquTng)(l — I1$QQ1QQT’1T2)(1 — IlﬁCQngquTng).

LRy5(0) =

It is surprising that all coefficients in this (somewhat complicated) formal power series are
1. If we put x; = 29 = 3 = 1 into the above LR55(0), we obtain the generating function
expressing the number of different “types” of partitions appearing in the tensor product
{1, A2 {1, 2 }. For example, it is expanded as

L+q+rm+a’+qae+r’+rr+2ar +--- - + 131 qoryPr® - )

and hence we know that 13 different types of partitions appear in the product {51}{32}.

We can prove Proposition 7 by a similar method stated in the proof of Theorem 4, and
we here state only the outline of the proof. First, by using the Littlewood-Richardson rule
(or hives), we can easily show that c§ , > 0 if and only if

AL+ |u| = v,

vy <min{Ag, pa}t, max{Aa, p2} < v,
vs <min{Ay, p1}, max{A, i} <y,
vs+ vy < Ao+ po <vo+ vz < A+,
vo 4 va < min {1 + pi2, A2 + pu }-
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Under these conditions, we calculate the sum

E v 1 v. A A
:'El 2‘/1:2 3$3 4q1 1q2 2711H17n2#2_

A p, v

Then after many case by case examinations, we can finally obtain the expression stated
in Proposition 7.

Finally, we give two applications of our formula on generating functions. The first one
concerns the multiplicity-free product. In [26] Stembridge gave a classification of the pair
(A, ) such that the product {A}{p} is multiplicity-free. We here give another proof of this
result for the case {A\} = {1, A2} and {u} = {u1, po}, by using our generating function
FQ’Q and LR272(0).

Theorem 8 ([26]). The product {\i, \o}{ 1, po} is multiplicity-free if and only if
{A1, A2} or {p1, po} forms a rectangle.

Proof. 1t is clear that the product {A\1, A2}{p1, u2} is multiplicity-free if and only if
the coefficient of z1"2x9"3 w3 1M @ 2r1#1r9H2 in Fyy is 1 for any {v}. Since the coeffi-
cient of each term in LR25(0) = (1 — z1%x2q1%qor1®ra) Fao is always 1, the above con-
dition is equivalent to say that the coefficient of g1 g 2r1#1195"2 in Fs5 and in (1 —
11202q12qor1?r2) Fop coincides. If the term containing qqM~2ge*2~1r#1 =221 appears
in Fyo, then g1 M ga*2r1#179#2 does not possess this property. And the converse is also true.
Clearly the term containing g, ~2go*2~1r1#172r9#2=1 does not appear in Fy if and only if
{A1, A2} or {1, pa} is a rectangle, and thus we complete the proof of Theorem 8. q.e.d.

Next, as the second application, we give the explicit expression of the Littlewood-
Richardson polynomial. We can easily see that the generating function LR32(N) also can
be expressed as

LRQ,Q(N) = LR272 (0) + x12w2q12q27’12r2F272 x N.

By using this equality, we can easily show the following theorem.

Theorem 9. Assume that the partitions {\} = {A1, Ao}, {u} = {p1, e}, {v} =
{v1, -+ va} satisfy 5, # 0, and we put {\} = {1 — 2, — 1}, {7} = {1 — 2, p2 — 1},
{7} ={r1—3,15—2,v3—1,v4}. Then the Littlewood-Richardson polynomial corresponding
to the partitions {\}, {u} and {v} is given by cgﬁN + 1. (If {\Y, {m} or {¥} does not
form a partition, we consider c?ﬁ =0.)

The essence of the proof is almost same to that of Theorem 8, and we leave the proof
to the readers.

In contrast to the above theorem, it is in general hard to express the Littlewood-
Richardson polynomial as an explicit function of {A}, {u} and {v} because it requires
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quite complicated case by case verification. For example, assume that the partitions
{A} = {1, A0, A3}, {u} = {1, po} and {v} = {1, - -, v5} satisfy the following conditions:

vy < A3 < A <3 <y <Ay <o,

Ao+ 1+ 1 < v+ vy,

A3+ po < v+ vy < min { Ay + po, As + 1},
vy + vs < min {Ag + o, A3 + f11 },

A3+ v < A+ Ao

Then after some calculations, we know that the Littlewood-Richardson polynomial for this
case is given by

1
5{(—2>\1 — )\3 — M1 + 21/1 + vy + I/5)N + 2}{()\3 + H1 — Vo — I/5)N + 1}
+ ()\1 + )\2 — )\3 — Vl)N{(Vl — )\1)N + 1}
1
+ 5(/\3 + 1 — vz —v) N{(=2\1 — A3 — g1 + 201 +v3 +vy) N + 1},

References

[1] Y. Agaoka, Decomposition formulas of the plethysm {m} ® {u} with |u| = 3, Tech-
nical Report No.91, The Division of Mathematical Information Sciences, Faculty of
Integrated Arts and Sciences, Hiroshima University, 2002, pp.1-12.

2] Y. Agaoka, Decomposition formulas of the plethysms {AB} ® {2} and {AB} ® {1%},
Technical Report No.95, The Division of Mathematical Information Sciences, Fac-
ulty of Integrated Arts and Sciences, Hiroshima University, 2003, pp.1-16.

[3] T. H. Baker, The Littlewood-Richardson rule and the boson-fermion correspondence,
J. Phys. A: Math. Gen. 28 (1995), L331-L337.

[4] L. Bégin, C. Cummins and P. Mathieu, Generating-function method for tensor prod-
ucts, J. Math. Phys. 41 (2000), 7611-7639.

[5] A. D. Berenstein and A. V. Zelevinsky, Triple multiplicities for sl(r + 1) and the
spectrum of the exterior algebra of the adjoint representation, J. Alg. Comb. 1
(1992), 7-22.

6] A. S. Buch, The saturation conjecture (after A. Knutson and T. Tao), L'Enseign.
Math. 46 (2000), 43-60.

[7] L. Carini and J. B. Remmel, Formulas for the expansion of the plethysms s3[s(qp)| and
52[8(nk)], Discrete Math. 193 (1998), 147-177.



Littlewood-Richardson coefficients 23

[8] C. Carré and B. Leclerc, Splitting the square of a Schur function into its symmetric
and antisymmetric parts, J. Algebraic Comb. 4 (1995), 201 231.

9] H. Derksen and J. Weyman, On the Littlewood-Richardson polynomials, J. Algebra
255 (2002), 247-257.

[10] S. Fomin and C. Greene, A Littlewood-Richardson miscellany, European J. Comb.
14 (1993), 191-212.

[11] W. Fulton, Young Tableaur, London Math. Soc. Students Texts 35, Cambridge
Univ. Press, Cambridge, 1997.

[12] A. Knutson and T. Tao, The honeycomb model of GL,(C) tensor products I: Proof
of the saturation congecture, J. Amer. Math. Soc. 12 (1999), 1055-1090.

[13] M. A. A. van Leeuwen, The Littlewood-Richardson rule, and related combinatorics, in
“Interaction of Combinatorics and Representation Theory”, MSJ Mem. 11, 95-145,
Math. Soc. Japan, Tokyo, 2001.

[14] D. E. Littlewood, The Theory of Group Characters and Matriz Representations of
Groups (Second edition), Oxford Univ. Press, Oxford, 1950.

[15] D. E. Littlewood and A. R. Richardson, Group characters and algebra, Phil. Trans.
Royal Soc. London A 233 (1934), 99-141.

[16] 1. G. Macdonald, Symmetric Functions and Hall polynomials (Second edition), Ox-
ford Univ. Press, Oxford, 1995.

[17] J. Patera and R. T. Sharp, Generating functions for characters of group representa-
tions and their applications, Lect. Notes in Phys. 94 (1979), 175-183.

[18] E. Rassart, A polynomiality property for Littlewood-Richardson coefficients,
arXiv:math.CO/0308101 (2003), pp.1-14.

[19] M. F. O'Reilly, A closed formula for the product of irreducible representations of
SU(3), J. Math. Phys. 23 (1982), 2022-2028.

[20] J. B. Remmel, Combinatorial algorithms for the expansion of various products of
Schur functions, Acta Appl. Math. 21 (1990), 105-135.

[21] J. B. Remmel and R. Whitney, Multiplying Schur functions, J. Algorithms 5 (1984),
471-487.

[22] J. B. Remmel and T. Whitehead, On the Kronecker product of Schur functions of
two row shapes, Bull. Belg. Math. Soc. 1 (1994), 649-683.

(23] H. Schlosser, A closed formula for the decomposition of the Kronecker product of
irreducible representations of SU(n), Math. Nachr. 134 (1987), 237-243.



24 Y. Agaoka

[24] H. Schlosser, A closed formula for the rule of Littlewood/Richardson with applications
in the theory of representations of gl(V') and the superalgebra pl(V'), Math. Nachr.
151 (1991), 315 326.

[25] R. P. Stanley, Enumerative Combinatorics Vol.2, Cambridge Univ. Press, Cambridge,
1999.

[26] J. R. Stembridge, Multiplicity-free products of Schur functions, Ann. Combinatorics
5 (2001), 113-121.



