The Iwasawa invariants and the higher K-groups
associated to real quadratic fields

Hiroki Sumida-Takahashi *

Abstract

Using fast algorithms, we computed the Iwasawa invariants of Q(v/f,(p)
in the range 1 < f < 200 and 3 < p < 100 000. From these computational
results, we obtained concrete information on the higher K-groups of the ring

of integers of Q(+/f).

1 Introduction

Let x be an even Dirichlet character of conductor f = f,. The generalized
Bernoulli numbers By, are defined by

T ya)te & tk
M =3 By
a=1 k=0

First, let us look back over the case of x = x° the trivial character . For k # 1,
By yo is the k-th Bernoulli number By, and By,0o = By +1 = 1/2. A pair of
integers (p, k) is said to be an irregular pair if p is a prime, &k is an even integer
satisfying 2 < k < p—3, and p divides the numerator of By = By, 0. Irregular pairs
have been computed by Kummer, Vandiver, D.H. Lehmer, E. Lehmer, Selfridge,
Nicol, Pollack, Johnson, Wada, Wagstaff, Tanner, Ernvall, Metsankylda, Buhler,
Crandall, Sompolski and Shokrollahi. These computations were originally used to
verify “Fermat’s Last Theorem”. However, even after the proof was completed
by Wiles, they are still important because they give us concrete knowledge of the
ideal class group of cyclotomic fields.
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Let p be an odd prime number and A, the p-part of the ideal class group of
K, = Q({n+1). Let w = w, be the Teichmiiller character Z/pZ — Z, such that
w(a) = a mod p. We identify A = Gal(Kw/Qoo) With (Z/pZ)*. Put

ek = ﬂiA Z wk(8)6

the idempotent of the group ring Q,[A]. Then we have

An = @ kaAn@ @ ewP*kAna

k:even p—k:odd

where k is an even integer with 2 < k < p—1. We denote the even part (resp. odd
part) by A} (resp. A,). Let r, be the irregularity index, i.e., the number of
irregular pairs (p, k). For any prime number p < 12 000 000, it has been verified
that

At ={0} and A, ~ (Z/p"t*Z)™ for all n > 0

(cf. [Buhler et al. 1993] and [Buhler et al. 2001]). The former statement is called
Vandiver’s conjecture. We have a naive explanation of the fact that we have not
been able to find any counter-example. If we follow the argument of [Washington 1997,
pp-158-159], we can expect that the number of exceptions to Vandiver’s conjecture
for o < p < 7 is approximately (loglog z1—loglogzg)/2. Then, (loglog 12 000 000—
loglog 37)/2 = 0.7536143467 - - - is perhaps too small to find one counter-example.
However, many number theorists may doubt the above expected number. As a
matter of fact, we have to consider some effects on ideal class groups from an
upper bound for the numerators of Bernoulli numbers, and from a lower bound
for discriminants (cf. [Washington 1997, pp.221-230]). If there is another strong
bound, the actual number can be much less than the above number.

In this paper, following [Sumida-Takahashi 2004], we consider the ywF-part
instead of the w*-part, where x is an even quadratic Dirichlet character. The
reason why we consider quadratic characters is that their values are included in Q
as well as the trivial character. The first main purpose of this paper is to effectively
find “exceptional pairs” (p, xw*) in order to argue about the expected number.
Here we call (p, yw*) an exceptional pair if and only if yw*(p) # 1, xw! *(p) # 1,
and one of the following conditions is satisfied: v,(xw*) > 0, v,(L,(1, xw¥)) >
1, v,(Ly(0,xwk)) > 1, or Xp(xwk) > 1, where v,(xw¥) is the xw-part of v,-
invariant and v, is the p-adic valuation such that v,(p) = 1 (see section 3 for
the details). We actually computed the Iwasawa invariants of Q(\/E, (p) in the
range 1 < f, < 200 and 3 < p < 100 000. From our data, the actual number of
exceptional pairs seems to be near to the expected number in the range. On the
other hand, we could not find any exceptional pair for f, = 5 and p < 2 000 000
as well as for the trivial character.

Let F' = F, be the real quadratic field associated to x, and O the ring of
integers of F. By [Dwyer and Friedlander 1985] and [Kolster et al. 1996], there
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are relations between Quillen’s K-groups K,(Or) and the Iwasawa modules for
unramified abelian p-extensions of U,>¢F((yn). The second main purpose of this
paper is to give concrete information on the higher K-groups of O by using the
computational results. For example, we found that for 3 < p < 100 000, p divides
the order of K68372((9Q( \/g)) if and only if p = 34301 under the Quillen-Lichtenbaum
conjecture.

2 Notation and conjectures

In this section, we introduce some conjectures on higher K-groups and Iwasawa
modules, which will appear in the following sections.

Let F' be a finite extension of Q. The following theorems and conjecture are
well known.

Theorem 1. (Quillen) For all n > 0, K,,(OF) is a finitely generated Z-module.

Theorem 2. (Borel) For m > 1,

bt - { "GRG

where r(F) is the number of real embeddings of F, and ro(F) is the number of
pairs of complexr embeddings of F'. Further,

sz_Q (OF) 18 ﬁmte

Conjecture 1. (The Quillen-Lichtenbaum conjecture) The natural map (via p-
adic Chern characters)

Kom-i(OF) ® Zy — Hyy(Spec(Or[1/p]), Zy(m))

18 an isomorphism for all m > 2, i = 1,2 and any odd prime number p, where
A(m) is the m-th Tate twist of a Galois module A.

The surjectivity of p-adic Chern characters was proved by [Dwyer and Friedlander 1985].

We simply denote H:,(Spec(Or[1/p]),A) by H(Op, A). Put K = F((,) and de-
note by K the cyclotomic Z,-extension of K. Put G = Gal(Ky/F), A =
Gal(Ky/Fy) and I' = Gal(K«/K). Then we have Go, = A x I'. Let L, be the
maximal unramified abelian p-extension of K, and L.  the maximal unramified
abelian p-extension of K, in which every prime divisor lying above p splits com-
pletely. Put X, = Gal(Ly/Ky) and X, = Gal(L.,/K). Let E] be the group
of p-units of K, and E,_ = lim (E! ® Z,), where the inverse limits are taken
with respect to norm maps. The above étale cohomology groups are expressed as
follows.



Theorem 3. ([Schneider 1979, §6.1] and [Kolster et al. 1996, §3, §4]) For m #
0, 1, we have an exact sequence

0— (B (m—1))a. = H (OF, Zy(m)) = X (m —1)% — 0.

Further we have H (O, Zy,(m))iors =~ H*(Or, Q,/Z,(m)).
For m # 1, we have an exact sequence

0— X, (m-1)¢q, — H*Or,Z,(m))
= [, H*(Fy, Zp(m)) — H*(Op, Qp/Zy(1 —m))" — 0,

where AY = Homg, (A, Q,/Zy).

It is not difficult to compute H(OF, Q,/Z,(m)) and H?(F,, Z,(m)) (cf. sec-
tion 4). Therefore, if the Quillen-Lichtenbaum conjecture is true, it is not difficult
to determine the structure of Ky, 1(OF) as an abelian group. Further, we can ob-
tain the order of Ky,,_2(Op) by using the order of X/ (m —1)¢g, . Let us consider

the following case
F is totally real and F N Q((,) = Q.

For a Z,[A]-module A and a character w™ of A ~ Gal(Q((,)/Q), we denote e,m A
by A(™). Since
Xio(m = Ve = (X' ™ @ Zy(m = D),

(1-m)

o as an Iwasawa module. If

it is important to study the structure of X'
m is even, X'&_m) has no nontrivial finite submodule (cf. [Washington 1997,
p- 290]). Therefore, the order of the I'-coinvariant quotient can be obtained from
the Iwasawa polynomial for X ’g_m). By the Iwasawa main conjecture proved by
[Mazur and Wiles 1984] and [Wiles 1990], the polynomial is essentially the p-adic
L-function. Therefore, if F' is abelian, it suffices to compute the Kubota-Leopoldt
p-adic L-function. On the other hand, if m is odd, it seems to be more difficult to
study the structure of X’ E;m). In fact, the following classical conjectures are still

open.

Conjecture 2. (Vandiver’s conjecture) For F = Q and any odd integer m,
X' s trivial.

Conjecture 3. (Greenberg’s conjecture) For any totally real number field F and
(1=m) s finite.

So far we have not been able to find any counter-example to the conjectures.
Conjecture 2 has been verified for all p < 12 000 000. Conjecture 3 has been
mainly verified for real abelian fields with small discriminants and some prime
numbers p = 3,5,7,--+ by using cyclotomic units and auxiliary prime numbers
(cf. [Ichimura and Sumida 1996] and [Kraft and Schoof 1995]). In [Sumida-Takahashi 2004],
the author exploited a method to effectively check the exact value of the p-part
of the class number by using Gauss sums and auxiliary prime numbers. We will
give some numerical examples of the Iwasawa invariants and the higher K-groups
in the following sections.

any odd integer m, X'



3 Iwasawa invariants of Q(,/fy, ()

Let x be an even quadratic Dirichlet character and p an odd prime number. Put
F=F =Q(y/fy) and K = Q(y/fy,{y)- We use the notation in the previous
sections. We put A’ = Gal(Koo/Qoo) and €}, = 557 >5ea ¥(6) " for a Dirichlet
character 1 of A’. For a Z,[A']-module A, we denote e', A by AY. Let A\, (v), 1, (1)
and v, () (resp. A, (%), () and v,(¢))) be the Iwasawa invariants associated to

XY¥ (resp. X'%), i.e.,

$AY = eIt WP Hre(¥) - (regp g A'z = p/\;(w)nw;(w)p”w;(w))

for sufficiently large n. By Ferrero-Washington’s theorem, we have p,(v) =
piy (1) = 0 for all p and .

Assume that 1 is even. The Iwasawa polynomial g,(7) € Z,[T'] for the p-adic
L-function is defined as follows. Let Ly(s, 1) be the p-adic L-function constructed
by [Kubota and Leopoldt 1964]. Let fy be the least common multiple of f,, and p.
By [Iwasawa 1972, §6], there uniquely exists Gy (T) € Z,[[T]] satisfying Gy ((1 +
fo)' 75 =1) = Ly(s, %) for all s € Z,, if ¢ # x°. By [Ferrero and Washington 1979],
it was proved that p does not divide Gy (T"). Therefore, by the p-adic Weierstrass
preparation theorem, we can uniquely write Gy (T") = gy (T)uy(T"), where g, (T) is
a distinguished polynomial of Z,[T] and u,(T) is an invertible element of Z,[[T7].
Put A, (1) = deg gy(T).

Let k be an even integer with 2 < k < p — 3. Then yw” is an even character.
For a pair (p, xw*), we set the following condition

(€) xw*(p) # 1 and xw'*(p) # 1.

If xw*(p) # 1, we have A, (xw*) = M (xw") and v,(xw¥) = v, (xw"). In the range
1 < fy, <200, 3 <p <100 000 and even integers k with 2 < k < p — 3, there
are 13 631 032 822 pairs of (p, xw*) satisfying (C). Among them, 288 086 pairs
satisfy \,(xw®) = 1, 53 pairs \,(xw") = 2, and two pairs \,(xw*) = 3. By the
method of [Ichimura and Sumida 1996], we verified Greenberg’s conjecture, i.e.,
Ap(xw®) = 0 for each of them. Moreover, we checked that v,(xw®) < 2. In
the above range, 38 pairs do not satisfy (C). For these cases, we checked that
Ay (xw®) = 0 if xw*(p) = 1, and that \,(xw*) = 1 if xyw'*(p) = 1, which implies
that v,(xw*) = 0. Further, by computation of the p-units of real quadratic fields
Q(+y/fy), we verified that \,(x) = A(x) = v, (x) = 0 for all f, and p in the above
range (cf. [Fukuda and Komatsu 1986] and [Fukuda and Taya 1995]).

Proposition 1. \,(Q(+/fy,(p + Cp_l)) =0 foralll < f, <200 and 3 < p <
100 000.



The v-invariants of real quadratic fields

(fxap)
(8,31)(24,523)(33,29) (33,37)(37.7) (40,191) (40,643) (41,7211) (57,59)
(57,28927)(60,181)(65,8831) (69,5)(73,41)(76,79)(85,3)(92,7)(97,3331)
(104,2683)(109,3)(109,5)(109,809) (113,53)(113,20219) (124,157)
(129,5419)(136,37) (136,547) (136,4733) (140,23) (140,577) (145,17)
(
(
(

145,37)(149,7)(156,5) (156,7)(157,9613) (161,5) (165,199)(172,3)
173,227)(181,3)(185,139)(185,2389)
89,5)(69,17)

2

Let us call a pair of integers (p, k) a x-irregular pair if p is a prime, k is an even
integer satisfying 2 < k < p — 3, p divides ao(xw*) = L,(1, xw¥) (or by(xw*) =
L,(0, xwk)), and (p, xw*) satisfies (C). Further we define the x-irregularity index
rp(x) by

rp(x) = #{(p, k)|(p, k) is a x-irregular pair}.
We call a prime number p x-irregular if r,(x) > 0. Let m,(x) be the number of
even integers k with 2 < k < p — 3 such that (p, yw*) satisfies (C). We define

Yoo

(xsp) s.t. rp(x)=r

1 T p—l mp(x)—r
= my0Cr (5) <—) )
X’p

p

Ny =

and

where x runs over all even quadratic characters with 1 < f, < 200, and p runs
all prime numbers with 3 < p < 100 000. The distribution of the indices of x-
irregularity is given in the following table. The actual numbers n, seem to be near
to the expected numbers n. (cf. [Washington 1997, p.63]).

The x-irregularity index density

!

r Ny n, the density the density’
0 | 348574 349090.14 | 0.60579423 0.60669125
1174919 174464.73 | 0.30399548 0.30320601
2| 43596  43583.01 | 0.07576642 0.07574384
3| 7293 7257.27 | 0.01267466 0.01261257
4| 942 906.2 0.00163712  0.00157492
5 73 90.51 0.00012686  0.00015730
6 3 7.53 0.00000521  0.00001309
7 0 0.53 0.00000000 0.00000093

We extended the tables of [Sumida-Takahashi 2004] to all primes below 100 000.



v,(xw*) =1 (2 for the *-marked case)

Jx p k Ix p k Jx p k Ix p k
8§ 34301 114 | 12 701 542 | 21 199 150 | 33 53 30
37 43 32 | 53 1033 564 | 56 55621 9294 | 69 19 14
85 3607 3086 | 88 71 26 | 101 5333 2770|104 19 14
113 43 32 | 113 3373 1602 | 124 197 126 | 124 239 48
129 67 28 | 140 4751 120 | 141 5431 4826 | 149 43 32
149 71 16 | 149 229 182 | 156 50051 4582 | 157 401 56
161 101 22 |168 37 22 |172 73 10 [173 7 4
173 43 32 | 173 101 42 | 177 17 6« | 181 71 52
181 6991 1628 | 185 827 354 | 188 1621 168 | 193 62791 57100
197 521 372

vp(ao(xw*)) = 2
fx P k| fx p k Jx p k Jx p k
8 59 36 | 17 61 32 [ 21 149 128 | 21 10169 7388
28 977 828 | 33 59 42 | 37 1091 812 | 40 12101 318
41 7 4 | 41 283 102 | 44 787 148 | 53 7 2
53 1879 1158 | 57 2161 758 | 61 17 4 61 1747 1270
76 191 84 | 88 35099 24446 | 89 41 10 | 92 181 124
97 17 4 105 769 524 | 105 1453 162 | 120 2749 2196
124 41 30 | 124 26227 13770 | 140 107 74 | 149 797 140
149 2767 2178 | 152 17 12 | 152 25453 15704 | 156 66877 48258
168 43 10 | 173 13 4 |177 31 24 | 184 373 72
193 7873 1886

vp(bo(xw*)) = 2
Ix p k fx P k| fx p k| fx p k
8§ 2221 1600 | 13 109 6 | 17 1319 88 | 28 223 126
33 31 24 | 33 1777 1184 | 41 19 12 | 41 421 126
60 19 14 | 61 7481 3516 | 73 11 2 | 73 1487 808
76 1451 418 | 76 4283 3484 | 89 23369 9986 | 97 367 26
97 13613 13022 | 109 41 32 | 133 1061 446 | 136 449 284
152 41 2 | 152 4027 3108 | 156 4637 2280 | 156 38891 9454
157 8221 582 | 165 29 26 |165 89 66 | 165 1229 48
172 11 4 | 172 1487 900 | 177 337 74 | 177 58787 20838
184 1171 464 | 185 167 68 |188 89 76




A(xw®) = 2 (3 for the x-marked cases)

fx p k Ix D k fx D k fx p k
8 1151 842 | 8 27791 11840 | 21 11 4 21 60637 16528
24 29 4 24 181 84 | 29 569 64 | 37 5 2

37 89 66 37 3251 1094 | 40 257 232 | 44 653 448
93 193 14 56 1663 616 | 60 1277 582 | 60 1481 986
65 18121 3044 | 92 ) 2 97 271 94 104 19 14
104 7919 4386 | 105 373 340 | 109 131 100 | 109 293 132
109 373 128 | 124 733 o8 124 2111 1480 | 124 22091 15370
129 23 4 133 911 196 | 136 71 20 137 17 8
140 23 10 140 367 292 | 141 113 108 | 141 5939 2938
145 43 28 145 61 28 145 167 128 | 145 4157 3528

149 3 2 149 509 426 | 161 2389 646 | 161 64879 57186
165 11 2 165 23 6 165 71089 24840 | 172 13 10
172 47 38 173 7 4 177 157 48 181 223 26
181 82007 51630 | 185 17 10% | 185 17 6

In the following graphs, we compare the actual number of exceptional pairs
with the expected number in the range 200 < p < 100 000.

Exceptional pairs (200<p<100000)
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Exceptional pairs (200<p<100000)
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On the other hand, we found the following fact.

Proposition 2. For f, =5 and p < 2 000 000, there is no exceptional pair, that
is, for any pair (p, xw*) which satisfies (C),

vp(x®) = 0, vy (ao(xe*)) = v (Bo () = A, (xwb) < 1.

From our data, the actual number seems to be near to the expected number.
Even for large p, it might be possible that the actual number is near to the expected
number. Therefore it is not very strange that we have not been able to find
any exceptional pair for Y = x°, especially any counter-example to Vandiver’s
conjecture.

4 Higher K-groups of the ring of integers of Q(./f,)

In order to compute étale cohomology groups, we prepare some notation. For
an odd integer m, we write the Iwasawa polynomial g,,1-=(T) for the p-adic L-

function L, (s, xw'™™) in the form
Axw! ™)
gxwl—'"(T) = H (T - axwl"",i)a Qyt-m,i € Qp'
i=1
We put
Aoxw!=m)
z(p, x,m—1) = min < v,(xw'™™), v, H (1= 1+ fo)™ " (ay-m; + 1))
i=1



For an even integer m, put a},m ; = %, G (T) =11; (ﬁwm)(T o ym ;) and
xw™ i
Axw™)
z*(p,x,m—1) =, H (1—(1+f0)m Yot O ym +1))
=1
Further, for an integer m, we define the following sets of prime numbers
p—1 p—1

Si,m—1)= {p: 5|(m—=1), (p—1)f(m—1), x&7 (p) =1 and xw> #x"},

Sa(x,m—1)= {p: ( )|( —1) and x(p) = 1}.
We put

y(p, x,m

Up(m_1)+1 lfpesl(X:m_l)USQ(X:m_]')a
-1 = )
0 otherwise.

Proposition 3. Let x be an even quadratic Dirichlet character, p an odd prime
number and F' = F,. For an even integer m, if (p, xw™) satisfies (C), then

X (m — 1), = p P,

. wlfm . . _ .
For an odd integer m, assume that X'%; is finite. If (p,xw'™ ™) satisfies (C)
and if gy,-n(T) is an Eisenstein polynomial or of degree one, then

$X! (m — 1))(6}00 — pm(p,x,m—l)‘

811, , H? (Fo, Zp(m))X
§H(OF, Qp/Zy(1 — m))X B

Further, for an integer m, we have
J— y(p7X1m71).

Proof. We first set some notation. Let v be the topological generator of I' such
that C}wn = C}(;ff for all » > 0. As usual, we can identify the completed group ring
Z,[[I']] with the formal power series ring A = Z,[[T]] by v =1+ T. For a finitely
generated torsion A-module A, we define the Iwasawa polynomial char,(A) to be
the characteristic polynomial of the action 7" on A ® Q,, (cf. [Washington 1997,

§13]). By (C) and [Mazur and Wiles 1984], charA(X’X“km) = gy (1), Since
Xio(m =15 = X% ©2,(m - 1),

we have

Alxw™)
charg(X'so(m — 1)X) = [[ (T+1—= 1+ fo)™ " (@m; +1))-

=1
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Since X'o(m — 1)X has no nontrivial finite A-submodule, the order of the I'-
coinvariant quotient is obtained from the constant term of the characteristic poly-
nomial: v,($A4/A7" 1) = v,(§A/T A) = vy(chars(A)|r—o). Hence we obtain the first
equation.

Let M, be the maximal abelian p-extension of K., unramified outside p. Put
Yo = Gal(My/Ky) and Dy, = Gal(My/L.,). By definition, X! =Y, /Ds. By
(C) and [Mazur and Wiles 1984], we have char4(YX“' ™) = g u1-=(T). Hence

A(xw! ™)
chary (Yoo (m — 1)X) = H (T+1— (14 fo)™ (aywr-m; +1)).

=1

Since Yoo(m — 1)X has no nontrivial finite A-submodule, by the assumption on
Gywi-m (T'), we can completely distinguish any A-submodules of Yo, (m—1)X by their
indices. Hence DX*" ™ is the submodule of YX*' ™ of index p*»*“""™). Therefore
the second equation follows.

Put z = (—1)%}9. Then, Q(z) (resp. Q(2+/f)) is associated to n = w'z
(resp. x7). In order to prove the third equation, we first calculate hs, = tH?(F,, Z,(m)).
By local duality, we have hy, = §H°(F,, Q,/Z,(1—m)) = tH*(F,, Qp/Z,(m—1)).

If z ¢ F,, that is, xn(p) # 1, we have

b [ (D)l 1),
2o 1 otherwise.

If z € F,, that is, xn(p) = 1, we have

vp(m—1)+1 p 1
oo = { 1 it 25 (m 1),

otherw1se

Similarly, we can calculate ho tH(OF, Q,/Z,(1 —m)) = tH*(OF, Q,/Z,(m
1)). If 2 € F, that is, xn # x°, we have

b [P (= 1) — 1),
0 1 otherwise.

If z € F, that is, xn = x°, we have

o pvp(m—1)+1 if =L 1‘( )
0 1 0therw1se

() If xn = x°, then x(p) =0 # 1 and xn(p) = 1. Hence, we have hy, = hy.

(IT) If xn # x° and x(p) = 1, then xn(p) = 0 # 1. Hence, we have hg,, ho,, = 12
and hg = 1if (p—1)  (m—1). If (p—1)|(m—1), we have hg 4, hg,, = (prm—D+1)2
and hy = p*(™~Y+1. Since x(p) = 1 implies xn # x°, such a prime number p is
included in Sy(x,m — 1).
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(IOI0) If xn # x°, x(p) # 1 and xn(p) # 1, then we have hy, = ho.
(IV) If xn # x°, x(p) # 1 and xn(p) = 1, then we have hy, = hj unless ’%1|(m—1)

and (p—1){ (m—1). If Z}[(m—1) and (p—1) { (m—1), we have hy, = p*»(m-D+!
and hyg = 1. Since xn(p) = 1 implies x(p) = 0 # 1, such a prime number p is
included in S;(x,m — 1). Hence, we obtain the third equation. O

For a positive integer m and a prime number p, we denote by Ko, o(Or)(p)
the p-Sylow subgroup of Kj,,_o(Or). Here we put

Kpy 2(Or) = @ Kom 2(0r)(p),

3<p<100 000

X'(x,m—1)= H £ X5 (m — 1)g,, and
3<p<100 000
' _ § HU|P HZ(F”’ Zp(m))x
Yilxm—1)= 11 tH(Or, Qp/Zy(1 — m))X’

pES;(x,m), 3<p<100 000

Then, by Theorem 3 and the surjectivity of p-adic Chern characters, we have
8K —o(Or)X is divided by X'(x,m — 1) - Y{(x,m — 1) - Y3 (x, m — 1).

For an even integer m and a prime number p which divides the numerator of
By, we can compute v,(X'(x, m — 1)) from the zeros of the Iwasawa polynomial
by Proposition 3. In fact, we can easily obtain a lot of examples of (x, m) with
X'(x,m —1) > 1. On the other hand, for an odd integer m, it is more difficult to
obtain examples of (x,m) with X'(x,m — 1) > 1. Since Vandiver’s conjecture is
true for all p < 12 000 000, X’ (m — 1)’6‘;]oo is trivial for any odd integer m. Further
we have {H?(Qy, Z,(m)) = $H°(Qp, Qp/Zy(1 — m)) = $H*(Z, Qy/Zy(1 — m)). By
Theorem 3, Proposition 3 and our computational result, we obtain such examples
in the following table.
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!
Factors of §K,, (OQ(\/E))

4m/ fX XI(X’ 2m’) Yg(Xa 2m’) 4m/ fX XI(X7 2ml) Y;(X’ 2’/77,’)
68372 | 8 34301 316 | 12 701
96 21 199 o-17 44 33 23
20 37 43 3-11 936 | 53 1033 7-13%.37
92652 | 56 95621 43-6619-15443 8 69 19 5
1220 | 85 3697 3 88 38 71 3
5124 | 101 9333 43-367 8 104 19 5
20 | 113 43 11 3540 | 113 3373 7-11-31
140 | 124 197 3-11 380 | 124 239 3-11
7 | 129 67 9260 | 140 4751
1208 | 141 9431 5 20 149 43
108 | 149 71 7-19 92 | 149 229 47
90936 | 156 20051 9-7-19 688 | 157 401 3-173
156 | 161 101 28 | 168 37
124 | 172 73 3 4 173 7
20 | 173 43 116 | 173 101
20 | 177 17 11 36 | 181 71 33
10724 | 181 6991 3 944 | 185 827
2904 | 188 1621 23-67-727 11380 | 193 62791 3
296 | 197 921

We have Y{(x,2m') =1 for all the above cases. If the Quillen-Lichtenbaum con-
jecture is true, there is no other factor of K Allm’(OQ( \/E)): for example,

In [Soulé 2003], an explicit huge bound is given for the order of Ky, (Op). How-
ever, by our method, it would be impossible to compute z(p, x,2m’) up to the
bound.

5 Algorithms for computing arithmetic elements

We compute the following arithmetic elements:

(I) the generalized Bernoulli numbers modulo p, i.e., Z’,’;g By, t*/k! mod p,

(IT),, the Iwasawa polynomial g,,(7) mod p"*!,

(III),, the special cyclotomic unit ™ modulo a prime ideal £,, and

(IV),, the Gauss sum go(£) modulo a prime ideal £f, where £y = Nk, /k,Ln.

Some effective algorithms are known for computing the above elements. Here we

briefly explain them. For simplicity, we assume that p does not divide f = f,.
(I) We first compute the inversion of power series (e/* — 1)/t modulo (p,#?~2)

by the method of [Knuth 1981, §4.7], in which we use the “Fast Fourier Transform

13



(FFT)” algorithm (cf. [Knuth 1981, §4.3.3]). Next, we compute the approximated
polynomial 22:1 x(a)e® modulo (p,t*?). Finally, we multiply the two polyno-
mials by using the FFT algorithm again.

(IT),, By [Washington 1997, Theorem 5.11], we have

—Ly(1, xwk) = —L,(1 -k, xw")
= (1 — yw'w™ (p)p’”)L’xzk“_k
=(1- X(p)pkl)%
= % mod p.

Therefore, from the result of (I), we can obtain indices k£ such that p divides
Ly(1, xw*) = gyur (0)tyur (0). In order to effectively compute g, (7) mod p™*,
we use the following theorem (cf. [Washington 1997, §5.2]).

Theorem 4. (Washington) We have the formula

Lo = 05 a_%axwk(axaw (157 ) ()

where {a) = aw (a).

III),, By using the Iwasawa polynomial g, (7T) mod p"*!, we define a poly-
X

nomial Y, (T) € Z[T] (cf. [Ichimura and Sumida 1996]). Then we can study the
difference between the group of global units and that of cyclotomic units from the
information on the special cyclotomic unit CZ"(T) mod £, for some prime ideals £,
of K, of degree one. From the information we can obtain an upper bound for the
order of the p-part of the ideal class group by Mazur-Wiles’ theorem.

(IV), We can make certain that the computation (III), gives the exact value
of the order by studying the Gauss sums go(£o) mod £ for some prime ideals £
of Ky. In order to effectively compute go(£o) mod £5, we use the FFT algorithm
once again. Concerning the details for computation of the ideal class groups of
real abelian fields, see [Schoof 2003] and [Sumida-Takahashi 2004].

The computations in section 3 were handled by 30 personal computers of the
Division of Mathematical and Information Sciences, Faculty of Integrated Arts
and Sciences, Hiroshima University. The programs were written in UBASIC and
C-language, in which the GNU MP library was included in order to multiply
polynomials of large degree. For example, for p = 55 621 and f, = 56, it took
about (1) 7, (IT); 30, (IT)q 7, (I11); 7.4 x 105, (IV)y 4.8 x 102 seconds by one PC
(CPU: Pentium IV, 2.6G Hz, RAM: 1G byte).
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