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Abstract: We give a characterization of decomposable polynomial valued 2-forms in
terms of their components. Such 2-forms must satisfy some cubic condition in addition to
Pliicker’s quadratic relation. Several GL(n, K) x GL(m, K)-invariant varieties naturally
appear during this characterization, and we state the mutual relation of these varieties
and study their geometric properties in detail.
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Introduction

Let V be an n-dimensional vector space over the field K of real numbers or complex
numbers (n > 2) and V* be its dual space. As is well known, an element C' € A?V* is
decomposable i.e., it can be expressed as C' = a A 3 for some «, § € V* if and only if C
satisfies Pliicker’s relation

C(’Ul, 1)2)0(’03, 1)4) — C(’Ul, ’U3)C(1)2, ’U4) + C(Ul, ’U4)C(1)2, 1)3) =0

for any v; € V. (For example, see [9], [19]). The main purpose of this paper is to give
a similar characterization of decomposable “polynomial valued” 2-forms. This problem
is closely related to the existence of local isometric imbeddings of Riemannian manifolds
into the Euclidean space with codimension 1 (cf. [2], [7]).

To explain the results, we first fix the notations. We put V.= K™ (K = R or C)
and let A be a polynomial ring over K with m variables 1, -,z A = K[z1,--- , Zp],
and A = Y A? (A° = K) be the homogeneous decomposition of A. An element
a € V*® A' may be considered as an A'-valued 1-form on V. Then, for 3 € V*, the
exterior product a A B € A?V* @ A! is naturally defined as in the scalar valued case,
and we say that C € A?V* ® Al is decomposable if it is expressed as o A S for some
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a € V*® A and 8 € V*. In this polynomial valued case, decomposable 2-forms also
satisfy Pliicker’s relation. But this relation is not sufficient to characterize decomposable
2-forms in contrast to the scalar valued case. In fact the algebraic set of A2V* ® Al
defined by only Pliicker’s relation is not irreducible and it decomposes into two irreducible
components, one of which just coincides with the set of decomposable 2-forms. To obtain
a complete characterization of decomposable 2-forms, we must add one cubic condition
on C'. This additional condition is stated as follows: “For any v; € V, the polynomials
C(vi,v), C(v1,v3),C(v9,v3) are linearly dependent in A'”. We here give one example:
Consider the 2-form C = 27 wy A ws + T9 w1 A ws + T3 we A ws, where {w;} is a basis of V*.
Then, it is easy to see that C' satisfies Pliicker’s relation, but does not satisfy the above
cubic condition, and hence we know that this form C' is not decomposable.

The other irreducible component of the algebraic set defined by Pliicker’s relation
consists of A'-valued 2-forms that can be reduced to some 3-dimensional subspace of V.
As in the case of Pliicker’s relation, the algebraic set defined by the above cubic condition
also decomposes into two irreducible components; one is the variety of decomposable forms,
and the other is the variety consisting of 2-forms that take value in two variables z, xo
after some variable transformation.

In order to understand the variety of decomposable 2-forms, it is natural to treat
these three varieties simultaneously. All these varieties are characterized by two types of
conditions on C, and they are related to each other by possessing one common defining
equation for each pair (Theorem 1). In addition, the algebraic set defined by only one
type of condition on C splits into two irreducible components (Theorem 2). In considering
this mutual relation, another three varieties naturally appear as subsets of the above
varieties. In this paper, we characterize these six varieties completely by giving their
defining equations, inclusion relations, dimension, and clarify their geometric meaning by
introducing a parametrization of each variety (Proposition 3 and Theorem 8).

The space A?V* ® A! may be considered as a sort of 3-tensor space, and the results
of this paper possess some resemblance to the case of the 3-tensor space C? @ C? @ C?
studied in [3]. It is desirable and also interesting to extend our results to more general
3-tensor spaces such as A3V*, CP ® C?® CT, etc (cf. [5], [6]).

As stated above, the decomposability of polynomial valued 2-forms C' is naturally
related to the problem of local isometric imbeddings of Riemannian manifolds through the
notion of the partial Gauss equation that was introduced in [2]. By definition, the partial
Gauss equation is expressed as

(A) C=a ABi+-+arAB,,

where C' € A?V* ® Al is a given 2-form and o; € V* ® Al, 3; € V*. Roughly speaking, if
an n-dimensional Riemannian manifold M™ (n = dim V') is locally isometrically imbedded
into R™*", then certain 2-form C constructed from the curvature of M must be expressed
in the above form (A). (For the precise statement, see [2].) In particular, the results
stated in this paper is related to the case of hypersurfaces of R"*' (the case r = 1), and
the conditions on the decomposability of C' serve as obstructions to the existence of local



Decomposability of polynomial valued 2-forms 3

isometric imbeddings of M into R™"!. For further applications in geometry, we must
obtain a similar characterization of 2-forms C in (A) for larger .

§ 1. Statement of the main results

In this section, after fixing some notations, we state the main results of this paper. The
proof of Theorem 1 and Theorem 2 stated below will be given in the subsequent sections.
Let C be an element of A2V* ® A'. We define two linear maps do and ec as follows:

de : V—)V*®A1, dc(’l)):’UJC,
ec 1 N2V — Al ec(v1 A wvg) = C(v1,v9),

where v|C implies the interior product. In terms of these maps, we define the following
five subsets of A2V* ® Al:

Y ={CeNV*Q A |C=aAp for some a € V*® A, B € V*},
Y = {C € A°V*® A' | rank d¢ < 3},
Y3 ={C € A*V*® A' |rank e¢ < 2},
Y4 ={C € N?’V*® A' | rank d < 2},
Y5 ={C € A’V*® A |rankec < 1}.

As we will see later, these five subsets are all irreducible varieties of A2V*® A'. We remark
that if rank do < k, then C can be considered as an element of A2W* ® A! where W is
a k-dimensional subspace of V. In fact, since dim Ker do > n — k, there exists a basis
{e1,--+ ,en} of V satisfying ez 1|C = --- = €,|C = 0. Then, by using the dual basis
{w;}, the 2-form C' is expressed as Zf,j:l Cij wi Aw;, where C;; = C(e;, e;). Similarly, it is
easy to see that if rank ec < [, the number of variables m can be reduced to [ after some
variable transformation.

Next, we define several conditions on C' € A?’V* ® Al in order to describe the defining
equations of ¥;. We say that C satisfies condition (Cp) if it satisfies classical Pliicker’s
relation:

C(’Ul,’Ug)C(’Ug,’U4) — C(Ul, Ug)C(’UQ, U4) —+ C(’Ul, U4)C(’U2,’U3) =0€ A2

for any vectors v; € V. This condition is equivalent to C A C = 0 € A*V* ® A2, Next, if

the polynomials
C(v17 1)2)7 C(/Ulv U3)7 C(UZ: U3)

are linearly dependent in A' for any v;, we say that C satisfies condition (Cg). Using the
components of (', this condition is expressed as cubic polynomial relations of C. Finally,
for positive integer k, we say that C satisfies condition (Cy) if the polynomials

C(UI: U2)a C(Ula U3)a Tt C(Ula U/H-Q)
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are linearly dependent in A! for any v;. It is easy to see that this condition is equivalent
to
rank (v]|C) < k for any v €V,

where “rank” means the usual rank of the (m,n)-matrix v|C € V* ® A'. In this paper,
we use this condition only in the cases ¥ = 1 and 2. Note that condition (C}) is quadratic
and (Cy) is cubic, and clearly, condition (C}) implies (C3) and (Cg). By using these
four conditions (Cp), (Cg), (C1), (C2), we can completely characterize the subset X; C
A?V* @ Al in the following way.

Theorem 1. (1) C € X if and only if C satisfies (Cp) and (Cg).
(2) C €3y if and only if C satisfies (Cp) and (Cy).
(3) C € X3 if and only if C satisfies (Cg) and (Cy).
(4) C €3y if and only if C satisfies (Cp) and (Cy).
(5) C € X5 if and only if C satisfies (C1).
In addition, each subset ; (1 <1 < 5) is an irreducible algebraic variety of A*°V* @ Al.

N N N N

In particular, the decomposability of C € A2V* ® A! is completely characterized by two
types of conditions (Cp) and (Cg). In the case m < 2, we remark that C is decomposable
if and only if it satisfies condition (Cp) only, because condition (Cgp) is automatically
satisfied in this case.

By definition, an element C' belongs to Y, if and only if rank d- < 3, and hence, ¥y
is defined by quartic polynomials. But, the above theorem asserts that this condition can
be reduced to lower degree conditions (Cp) and (Cy).

By Theorem 1, we have clearly ¥; 0¥y = ¥ N 33 = 3y N X3, and C' belongs to this
algebraic set if and only if C satisfies three conditions (Cp), (Cg), (Cs). In the following,
we denote this algebraic set by .

Next, we characterize the algebraic set of A’V* ® A' defined by one of (Cp), (Cg),

(Cy).

Theorem 2. (1) C satisfies condition (Cp) if and only if C € ¥ U Xs.
(2) C satisfies condition (Cg) if and only if C € X1 U X3.
(3) C satisfies condition (Cy) if and only if C € 3y U X3.

By definition, any element C' € ¥ can be parametrized by the pair (o, 8) € V*® Al x
V*as C = aA . Other varieties ¥y ~ ¢ also have similar parametrization, by which we
can understand their geometric meaning.

Proposition 3. (1) C € %, if and only if C = f181 A Ba + faf51 A B3 + f382 A B3 for
some f; € A and ; € V*.
(2) C €33 if and only if C = fi% + foQ for some f; € Al and Q; € N2V™.
(3) C e€Xyif and only if C = fB1 A By for some f € A and B; € V*.
(4) C € Z5 if and only if C = fQ for some f € A' and Q € A*V*.
(5) C € Xg if and only if C = (f181 + fof2) A B3 for some f; € A' and B; € V*.
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Proof. For the statements (1) and (3), “if” parts are easy to see. The converse parts
are already proved after the definition of the varieties ¥; ~ X5, where we show C =
szzl Ci;j w; Aw; under the condition rank de < k. The statements (2) and (4) are almost
trivial because the condition rank ec < [ implies that the number of variables m can be
reduced to [, as stated in the same place. For the statement (5), we assume for some time
that the definition of ¥4 is 35 N X3 (since we did not prove Theorem 1 yet). Then, if
C € Y, C is expressed as fi181 A B2+ faf5i A B3 + f3f2 A B3 from the condition C € .
Next, since the number of variables is reducible to two, we may put, by the symmetry,
fs=afi+0bfs (a, b € K). Then, after substituting this into the above expression, we have

C = (1 +bB2 — afs) A (f1B2 + f233)- The converse part is trivial from (1) and (2). q.e.d.

This parametrization may be considered as a canonical form of each variety ;. This
proposition is useful in the proof of Theorems 1 and 2. We summarize the inclusion
relations of ¥; in the following figure:

X
decomposable
(Cp), (Cq)
Y4 Y6 Yo
rank do < 2 (Cp), (Cq), (Cy) rank do < 3
(CP); (01) (CP)7 (02)
25 E3
rankec <1 rank ec < 2
(Cy) (Cq), (Co)

(Note that condition (C4) implies (C) and (Cg), as stated before.)

Finally we state one remark. The group GL(n, K) x GL(m, K) acts naturally on the
space A2V* ® A, and it is easy to see that the above varieties ¥; ~ Y4 are invariant
under this group action. It is an interesting problem to classify all GL(n, K) x GL(m, K)-
invariant subvarieties of A2V* ® A! as in the case of the 3-tensor space C? ® C? @ C?
(cf. [3]). Perhaps another new concept is required to solve this problem in addition to
(Cp), (Cq) and (Cy), and to know such fundamental concept is one important step to
understand the 3-tensor space A2V* @ Al

§ 2. Preliminary lemmas

In this section we prepare several lemmas to prove the results in § 1. Each lemma plays
a crucial role in the proof of Theorems 1 and 2.
First, we prove the following lemma.
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Lemma 4. Assume C € N*V* ® A' satisfies conditions (Cp), (Cg), and there exists
v € V such that rank (v|C) > 2. Then, there exist a basis {e1,- - ,e,} and as ~ a, € K
satisfying
Cij = a;C1; — a;Cyy,

for 1 < i, j < n, where C;; = Cle;,e;) and a; = —1. In addition, such {a;} uniquely
exists if we fix a basis {e;}.

Proof. We choose a basis {ej,--- ,e,} such that e; = v, and let {wy,--- ,w,} be the
dual basis of {e;}. Then we have

v|C = Crawy+ -+ + Cry wy-

By rearranging the indices if necessary, we may assume that {C}s, Ci3} is linearly inde-
pendent because rank (v|C) > 2. Since {Ci2, Ci3, Cas} is dependent from condition (Cp),
Css is uniquely expressed as Coz = a3Cio — aoCh3. Next, for 4 <4 < n, we substitute this
equality into Pliicker’s relation

C12C3; — C13C; + C1;,Ca3 = 0.
Then we have immediately
C12(Csi + a3Ch;) = C13(Co + a2Cy;).

Since {C12, C13} is independent, the above expression is equal to a;C12C13 for some a; € K.
In particular, we have

C2i = afz'CIQ - 62011-

(Note that this equality holds for 1 < i < n.) Uniqueness of a4 ~ a, is clear from this
expression. We substitute this equality into

Clgcij - CliCQj + CleQi =0.
Then we have the desired equality Cj; = a;C1; — a,Cy; because Ciy # 0. q.e.d.

Before proving the next lemma, we introduce a notation |f; fo f3| (f; € A'), which we
often use in the following arguments. We express f; € A' as Z;"Zl fipZp, and put

flp f2p f3p
|f1f2f3|pq'r: flq f2q f3q €A3.
flr f2r fsr

We define |f; fa f3| by
(%)
——f—
\f1 fa fs| = (|f1 fa fslpgr)1<p<q<r<m € Ao A3
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i.e., |f1 f2 f3| is the set of (T;) polynomials |f1 fa f3lper (1 < p < ¢ <r < m) arranged in
some fixed order. Then, addition and scalar multiplication of |f; fo f3] is naturally defined.
For example, we have the equalities

\fi+fo fs fal = (1 fs fal + [ fa f5 fal,
lafy fo fs| =alfi fa f3l.

Clearly, |f1 f2 f3] is skew symmetric with respect to { fi, f2, f3}, and |f1 fo f3| = 0 if and
only if {f1, f2, f3} is linearly dependent in A®.

Using vectors v; € V, we put C;; = C(v;,v;). Then, in terms of the above notation,
condition (Cy) is expressed as

‘ Cij C,k Cjk ‘ = 0.

By replacing the vector vy by vy + v;, we have
|Cij Car, Cji |+ Ci Cit Cj | = 0.
In the same way, condition (Cy) is expressed in the form
| Cij Cix, Cit | = 0.
In this equality, we replace v; by v; + v;. Then it follows that
|Cij Cir Cji |+ Cy Cj Cy | = 0.

In particular, if C satisfies both conditions (Cg) and (C:), we have from the above two
equalities
|Cij Cir Cjt | = 0
because |C;; Cj, Cy| = —|C;j Cy Cji |- In addition, by replacing v; by v; + v, in this
equality, we have
| Cij Coi Ci | + | Cp Ci Ci | = 0.

Now, using this notation, we prove the following lemma.

Lemma 5. Assume C € N*V* ® A' satisfies condition (Cp) or (Cy). In addition,
there ezist vi, vo, v3 € V such that {C12, Ci3,Cas} (Cij = C(vi,v})) is linearly independent
in AY. Then C is expressed in the form C = fiB1 A o + fo81 A Bs + f3B2 A B3 for some
fie AL, B eV~

Proof. We fix a basis {e,---,e,} of V such that e; = vy, ea = vy, €3 = v3. Since
{C12, C13,Ca3} is linearly independent, we may assume C1p = x1, C13 = Tg, Co3 = z3 after
some variable transformation. Now, we divide the proof into two cases.

(i) The case where C satisfies condition (Cp). In this case, we have for 4 < i < n,

C12C05; — C13C% + C1;Ca3 = £1C3; — 2209 + 23C; = 0.
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From this equality, we have easily
Cri = a;z1 — biy,
Coi = ¢iz1 — bixs,

Csi = ¢iTy — a; T3

for some a;, b;, ¢;. Note that by putting as =1, b3 =c; = —1, a1 = a3 =b; = by = ¢y =
c3 = 0, the above equalities hold for 1 <7 < n. Next, we substitute them into

0120,']' - CliCQj + CleQi = 0.
Then, we have
Cij = (aic; — ajc;)m1 + (bjci — bicy)za + (azb; — aibj)zs.

Hence, by putting 81 = Y a;w;, fo = D bjw;, B3 = > ¢;w; ({w;} is the dual basis of {e;}),
we have
C =m101 A By — x202 N\ B3 — x301 A\ Po.

(ii) The case where C satisfies condition (C3). In this case, as prepared above,
we have |012 013 Ch| = |021 023 021' | = |031 032 031‘ = 0, and hence, Cli € <.’131,.’L'2),
Cyi € (11, 13), C3; € (X9, 23). In addition, from (Cy), we have

| C12 C13Cy; |+ | C12Ca3Cyi | =0,
| C93 Co1 C3i | + | Ca3 C31 Coi | = 0,
| C31C32Chi | + | C51 C12Ci | = 0.

Using these conditions, we obtain easily

Chi = a;x1 — bjzo,
Coi = ci1 — bizs,

Cs; = ¢;xy — a;T3.

Next, for 2 <7 <n and t € K, we have
(61 +t6Z)JC= 012w2+ +Clnwn+t(0ﬂw1 + +men)
=tChw + (Cia+tCi) wa + -+ (Cipy + 1 Cip,) W

Since rank ((e; + te;)|]C) < 2 for any parameter ¢, we have in particular, dim (Cis +
tCZ'Q, 013 + tcig, Clj =+ tC”> <2 for 2 < i, j <n. If |t| is sufﬁciently small, first two
elements are linearly independent, and hence

01]' +tCij S <C12 + tCiQ, 013 + t0i3> C <.’131, T, .’133>.
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Since Cy; € (x1, T2, x3), we have Cj; € (x1, z2, x3), and we may put Cj; = p;;z1 + ¢i;T2 +
ri;x3. Next, we take out the coefficient of z1, x5, z3 in the above three elements C2 41t Cjo,
Ci3+1 Ci3, C1+1 Cy;. Then, since these vectors span the space of dimension< 2, it follows
that

0 1-—- tCi tai
aj + tpij —bj + tqij tT‘ij
= t(tci — 1){(Ci7"ij =+ b,-pij —+ aiq,-j)t — Tij =+ ajb,- — aibj} =0

for any ¢. In particular, we have r;; = a,;b; —a;b;. Similarly, using the conditions rank ((es+
te;)|C) < 2, rank ((es + te;) |C) < 2, we obtain ¢;; = bjc; — bicj, p;j = aic; — ajc;. Hence,
it follows that

Cij = (aicj — ajci)xl + (bjci — biCj)iL'Q + (Cljbi — G,ibj).l'g.
Then, in the same way as in the case (i), we have the desired result. q.e.d.
We prepare one more lemma, for later use.

Lemma 6. Assume that C € N*V* @ A' satisfies condition (Cq) and there exists a
vector v € V such that rank (v|C) > 3. Then, there exist a basis {e1,--- ,e,} of V and
as ~ a, € K satisfying

Cij = U,jch' — CLZ’CU (0,1 = —1).

Proof. We fix a basis {ej,---,e,} such that e, = v. Then, in the same way as in
the proof of Lemma 4, we may assume that {Cj,---,Ci,} is linearly independent and
Cipt1 ~ Cip € (Cha,- -+ ,C1p). (Note that p > 4 because rank (v|C) > 3.) From condition
(Cg), the set {Cy;, Cyj, Cy;} is linearly dependent for 2 < ¢ # j < p, and hence, we may
put

Cij = a;5C1; — a;iChj

for some a;; € K. (Note that C;; = —C;.) In addition, we have from condition (Cg)

‘Cli Clj Cik: | + |Clz Clk CZ]‘ =0

for 2 <1, j, k <p (i, j, k are all distinct). By substituting the above expression into this
equality, we have immediately

(aji — agi)| C1; Crj Cii | = 0.
Since {C4;, C1j, C1x} is linearly independent, we have aj; = ay;. Therefore, we may put

aji = a; for 2 < 4 < p. Hence, by putting a; = —1, we obtain C;; = a;Cy; — a;C}; for
1<i,5<p.
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Next, we express Ci py1 ~ Ciyp, as

Cip1 =bpp12C12 + - -+ bpy1, Cip,

Cln = bn2 012 +---+ bnp Clp-
Then, for 2<i# j <p,p+1 <\ <n, we have from (Cp)

0=|CC Cirn| +[C1i Cix Cij |
= \ Chi Clj Cix | + \ Cui Cia CLjClz' - CLiClj \
=|Cy Ci; Cix+a;Chy .

In particular, we have C;y + a;C1y € (Cy;,Cyj). Since p > 4, there exists an index k
(2 < k < p), different from 4, j. Hence, by replacing j by k, we have in the same way,
Cix + a;C1y € (Cyi, Cig), which implies C;) + a;C1y € (Cy;). Therefore, we may express

Cin = ainCr; — a;Ch»

for 1 <i<p, p+1<A<n. (Wemay include the case i = 1 because a; = —1.) We
will show that the value a;, does not depend on i. For this purpose, we put v; = ey,
v =e;+e;,v3=¢ep+tey (2<14,7,k<p, i, j, kareall distinct, p+1 < A<nandte K
is a parameter). Then, from (Cg), we have

0 =|C(vy,vq) C(v1,v3) C(ve,v3) |
=|C1i+Cij Cip+1tCixn Cyp +tCin+ Cip +1Cj |
=|Cyi+Cij Ciyp+1tCin axCri — a;Cri + 0, Chj — a;Chy,
+ t(ainCii — a;C1x + a;3C1j — a;C1y) |
=t | Cu+ Clj Cip +tCiy ainChi + aj,\Clj |
=1|C1 + C1j Cie+t(bx2Cia+ -+ byyCip) (ajn — ain)Cij |-

Then, by taking out the coefficient of Ci;, Cy;, Cix, we have

1 1 0
t | thy tb)\j 1+thy | = t(ai,\ — aj)\)(l + tb)\k) =0
0 Ajix — Qi) 0

for any ¢, which implies a;» = a;,. In particular, we may put a;» = ay, and therefore,
Cin = a)Ch; — a;Chy

for1<i<p,p+1<A<n.
Finally, we show the equality

C)\H = CLNCD\ — a,\Clu
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for p+1 < A, p < n. In the same way as above, we put v; = ey, v2 = e;+sey, vz = ¢;+1e,
2<i#j<p,p+1<A#pu<n,and s, t € K are parameters), and apply condition
(Cg). Then, we have

0=|Ci+sCiy Ci+tCiy Cij+1tCiy+sCyj+ stCh, |
= |Cy+sCiy Cy+tCiy a;Cy — a;Chj +t(a,Cri — a;iChy)
— 5(axC1; — a;Cyy) + st Cy, |
=|Ci+sCiy Cij+1Cyy ta,Cri — s5a,Cyj+ st Cy, |
=|Cu+sCiy Ciy+tCyy, st(Cry — a,Cia+ axChy) |
=s5t|Cu+sCiy Ciyj+tCiy Cry—auCix+axCyy |

Now, assume that st # 0 and | s |, | t| are sufficiently small. Then, since {C1;+sCiy, C1j+
tCy,} is linearly independent, we have

C)\M - aMC’l)\ + CI,)\Clu € <Clz + s Cl)\, Clj + tClu>.
In particular, taking the limit s, t — 0, it follows that
C)\lt - auCu =+ a)\C1u € <01,', C1j>.

Using an index k& (2 < k < p), which is different from 7 and j, we repeat the same
procedure. Then, we have

Cru — 0,C1x + axChy € (Chy, C1j) N (Chy, Cig) N (Chj, Cri) = {0},

which implies C, = a,C1x — ayC1,, and we complete the proof of the lemma. q.e.d.

§ 3. Proof of Theorems

Using the lemmas prepared in § 2, we give a proof of Theorems 1 and 2 in this section.

Proof of Theorem 1. (5) 1If C € X5, then C is expressed as fQ (f € Al, Q €
A?V*) by Proposition 3 (4), and hence, condition (C}) clearly holds. Conversely, assume
C satisfies condition (C}). Then, for any vector v € V, we have rank (v|C) < 1. If
C = 0, then the theorem holds trivially, and hence we may assume that there exists v
such that rank (v|C) = 1. We fix a basis {e1,---,e,} such that e; = v, and by the
symmetry, we may put Cip = z1, C1; € (x1). From the condition rank (e;|C) < 1, we
have dim (Coy, Cag, - - - , Co,) < 1, in particular, Cy; € (z1). Next, for 2 < i < n, we have

(e1 +te;)|C =tCiwi + (Cra +tCi) wo + - -+ + (Crpp + t Ci) wi,

as in the proof of Lemma 5 (ii). Since rank((e; +te;)|C) < 1, we have dim(Cio+t Cjo, Cy;+
tCyj) <1for 2 <i, j<n.lIf|t|is sufficiently small, Ciy + t Cjs is not zero, and hence

Clj + tC’U € <012 + t01'2> = <.’L’1>
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In particular, we have C;; € (z1) because Cy; € (z1). Therefore, the coefficients of C are
all contained in the space (1), and hence, rank ec < 1, i.e., C' € Xs.

(4) If C € 34, C is expressed as ff; A By by Proposition 3 (3). Then, we have
clearly C A C = 0 and C satisfies condition (Cp). In addition, from Proposition 3 (4),
we have clearly C' € Y5, which implies that C satisfies (C), just we showed above. Next,
assume that C satisfies (Cp) and (C7). From condition (C}), we have C' € X5, and we
may express C as fQ (f # 0 € AY, Q € A?V*). Then, from condition (Cp), we have
CAC=fERANQ=0,1ie., QAQ =0, which is equivalent to classical Pliicker’s relation.
Hence € is decomposable, and C is expressed as f£; A B2. Thus, by Proposition 3 (3), we
have C € ¥,.

(1) Assume that C' € X;. Then C is expressed as aA 3, and hence it satisfies Pliicker’s
relation C AC = 0. Next, for any vectors v; € V, we put C;; = C(v;,v;), 5; = B(v;). Then
from the condition 8 A C' = 0, we have ,Cs3 — B2C13 + $3C12 = 0, which implies that
{C1s, C13,Ca3} is linearly dependent in the case (81, 52, 03) # 0. If 1 = P = B3 = 0, we
have clearly C'5 = Ci3 = Cs3 = 0, and we obtain the same conclusion. Now, we prove the
converse part. First, assume that there exists v € V such that rank (v]|C) > 2. Then, by
Lemma 4, C;; is expressed as

Cij = a;Cri — a;Chj,
for some a; € K. Then, by putting « = > Cy;w; and § = > a;w;, we have C = a A S,
which implies that C' is decomposable. Next, assume that rank (v|C) < 1 for any v. In
this case, the 2-form C satisfies two conditions (Cp) and (C}). Hence, by Theorem 1 (4),
which we showed above, we have C € ¥,. In particular, from Proposition 3 (3), C is
expressed as fB; A B, which implies that C' is decomposable.

(3) By Proposition 3 (2), “only if” part is clear. We assume that C satisfies conditions
(Cg) and (Cy). From (Cs), we have rank (v|C) < 2 for any v € V. If rank (v|C) < 1 for
any v, then C satisfies condition (C}), and in particular, C € X5 C X3 (cf. Proposition
3 (2), (4)). If there exists v such that rank (v|C) = 2, then, as before, we can choose a
basis {e;} such that e; = v, {C}2, C3} is linearly independent and Cy4 ~ Cy,, € (C1a, Ci3).
Since two conditions (Cg) and (C3) hold, we have the following two equalities, which we
showed in § 2, after the proof of Lemma 4.

(B) | Cij Cir Cj | =0,
(€) | Cij Cp Cji | + [ Cpj Cig, Ci | = 0.
From (B), we have |Cis Ci3 Cy| = 0, ie., Cy € (Ci,Ci3). From (C), we have

|021 Cpk Cl3| =+ ‘Cpl C2k 013‘ = 0. Since Cpl, Cgk € <012,013>, the second term is
zero, and hence, we have Cp; € (Ci2, C13), which shows that the 2-form C is (Ciy, Ci3)-
valued. In particular, the number of variables is reducible to two, and hence we have
C € 3.

(2) If C € X, it is expressed as f18; A By + foffi A Bs + f382 A B3 by Proposition
3 (1). And in addition, without loss of generality, we may assume {1, B2, 53} is linearly
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independent, by changing f; if necessary. We extend {f;} to a basis of V* and denote its
dual by {e;}. Then, for any vector v = ) _ ae; € V, we have

v|C = are1|C + azes|C + azes|C
= a1 (f1B2 + foBs) + ao(—f1B1 + f3P3) — as(faB1 + f352)
= —(agf1 + asf2)B1 + (a1 fr — asf3) B2 + (a1 fo + azf3)Ps.

By using the equality
—ai(asfi + azfo) + azx(arfi — azf3) + az(aifo + aafs) =0,

we can easily check that rank (v]C) < 2, and hence, C satisfies condition (Cs). From the
above expression of C, Pliicker’s relation C' A C' = 0 is clearly satisfied.

Next, we assume that C satisfies conditions (Cp) and (Cs). If there exist v; € V
such that {C(vy,v9), C(v1,v3),C(ve,v3)} is linearly independent, then by Lemma 5 and
Proposition 3 (1), we have C' € Xy. If {C(v1,v2),C(v1,v3),C(va,v3)} is dependent for
any v;, then C satisfies conditions (Cp), (Cg), (C2). Hence, by Theorem 1 (1), (3), it is
decomposable and the number of variables can be reducible to two. Using these two facts,
it is easy to see that C' is in the form (f1 51 + fof2) A B3, and by Proposition 3 (1), we have
C € .

Finally, we show that 3; is an irreducible variety. By definition and Theorem 1 (1),
each Y; is an algebraic set of A?V* ® A! because it is defined by the vanishing of some
polynomials of C'. In addition, by Proposition 3, it is just equal to the image of certain
polynomial map from some affine space, and hence it is irreducible. q.e.d.

[4%4

Proof of Theorem 2. For three statements, “if” parts are all clear from Theorem 1. We
prove “only if” parts.

(1) Assuming that C satisfies (Cp) and C ¢ ¥, we show C € ¥y. By Theorem 1 (1)
and the condition C' ¢ X;, C does not satisfy condition (Cg), namely, there exist vy, vo,
vy such that {C'(vq,vs), C(v1,v3), C(ve,v3)} is linearly independent. Then, by Lemma 5,
C is expressed in the form f1581 A B2 + fo81 A Bs + f382 A B3, and hence C € X,.

(2) We assume that C satisfies (Cg) and C' ¢ X3. Then, C does not satisfy (Cy),
as above. Hence, there exists v such that rank (v|C) > 3, and by Lemma 6, we have
Cij = a;Cy; — a;Cy; for some a;. Using this expression, we have immediately C € ¥; as
we have done in the proof of Theorem 1 (1).

(3) Assume that the conditions (Cs) and C' ¢ X3 hold. Then, since C' does not satisfy
(Cg), we have C € ¥y by Lemma 5, in the same way as (1). q.e.d.

§ 4. Dimension and the inverse formula

Scalar valued decomposable 2-forms C € A%2V* are expressed as 31 A ;. But two
1-forms B, B, € V* are not uniquely determined from C. In contrast, for A'-valued
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decomposable 2-forms C = a A 3, two 1-forms a € V* ® A! and B € V* are essentially
uniquely determined if C is sufficiently generic (precisely, if C' € ¥;1\X;). In this section,
using this result, we express a and [ explicitly in terms of the components of C'. In
addition, we determine the dimension of each variety X; by using the results obtained in
previous sections.

Proposition 7. Assume C € ¥1\X, and C =aAB=d NS (a, o/ € VF® AL, 3,
B' € V*). Then there exist k (#0) € K and f € A' such that o/ = ka+ f8, 8' =1/k - B.

Proof. Since C' satisfies conditions (Cp) and C ¢ 34, it does not satisfy (C}), and
hence, there exists v € V such that rank (v|C) > 2. Then, by Lemma 4, C;; is expressed
as

Cij = a;C1; — a;Cyy,

by using some a; € K, which is uniquely determined. In addition, as stated in the proof of
Lemma 4, we may assume that {C},, C13} is linearly independent by changing the indices
if necessary. We put «; = afe;), f; = Ble:), of = o/(e;) and B = ['(e;). If 51 = 0,
then we have Ci5 = a1, and Ci3 = o133, which implies that Ci5 and C43 are parallel.
Hence, we have §; # 0. In the same way, we have 5] # 0. Then, from the condition
BAC =BANaANp =0, we have

B1Ci; — BiCh; + B;Cri = 0,
namely,
Bi Bi
B B

Since the coefficient (3;/3; is uniquely determined from Lemma 4, we have §;/5, = Bi/51,
which implies 8’ = 3]/8; - 8. Next, from the equality Cy; = a1 5; — ; 81, we have

_ 1
B

Then, in terms of the dual basis {w;}, we have

o = Zaiwi
= = Z(mﬁi — Chi) wi

Cij = -Chj — = Ch.

(041,31' - Cli)-

Q;

B
(01— er]C)

= —(auff—e .
3, 1 1

Using this equality, we obtain
! 1 ! !
o = (o —e]C)
o}
oy B, 1
=— - —0—-—=(yf — fi«
,8{ ,81 ﬁi( lﬂ ﬁl )

= fB + ka,
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where f =}/ — a1 /B] € At and k = B1/5]. q.e.d.

Remark. As is easy to see, we cannot drop the condition C' ¢ ¥, in this proposition.
In particular, it is necessary n > 3 and m > 2 to hold the above condition, because
rank (v|C) > 2 for some v € V. (Note that (v|C)(v) =0.)

Now, we give the explicit inverse formula for generic C. Using a basis {e1,--- ,e,}, we
put Cj; = C(e;, ) = Z;nzl Cijpxp. Then, since {Cy;, Cy;, Cyj} is dependent, we have
Crip Cijp Cijp
Chig Cijq Cijg | =0,
Cli'r Cljr Cij'r

and this equality implies

Cljp Cijp Ciip Cij Ciip Ci;
Chi — » o D |0 = 0.
‘Cuq Cijg | " | Cug Cijg | V7| Cug Cujg | ¥
Hence, if Crip Cjp # 0, we have
1ig Cljg
Clip Cijp Cijp Cij
C R Jp Jp CZ
Ci; = ‘ Ciig Cijg | 7| Cijg Cijq |
? Clip Cljp
Cliq Cqu

Then, combining with the expression

Bi Bj
Ci; = —Ch; — “LC,
Yos T a
appeared in the proof of Proposition 7, we have
Crip Cijp

@ _ ‘ Ciig Cijq
B Ciip Cijp
Cliq Cqu

because the coefficient of ' is uniquely determined from Lemma 4. From this expression,
the 1-form [ is uniquely determined up to a non-zero constant, and this gives the inverse
formula of 8. Note that the right hand side of this expression does not depend on the
choice of indices j, p, ¢ unless the denominator is zero. The inverse formula for « is already
given in the proof of Proposition 7:

_ L
b

«

(Oélﬁ — €1JC).
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From this expression we know that the 1-form « is essentially equal to e; |C up to a
non-zero constant. We remark that C' € ¥; belongs to ¥, if and only if the determinant
‘ Cijp  Cikp

D
(D) Cijg Cikg

is zero for all vectors v; and indices p, ¢, where C;; = C(v;,v;). The denominator of the
inverse formula of § is a special case of this determinant (D).
Finally, we determine the dimension of the varieties 3, ~ Y.

Theorem 8. The dimension of the variety ¥; is given in the following table:

n=2|m=1|n>3 and m>2
¥ m | 2n—3 (n—1)(m+1)
Yolff m |2n—3 3(n+m—3)
S m @) 2(5) +2m —4
Y m 2n—3 2n+m—4
Sl om | @) | @em-
Y6 m 2n—3 3n+2m—17

In the case n = 2, all varieties ; are equal to the whole space N2V* @ A' ~ A, and in
the case m =1, ¥3 = X5 = A2V* @ Al ~ A?V* and ¥ = ¥y = X4 = X coincides with
the set of scalar valued decomposable elements of A2V* @ Al ~ A2V*,

Proof. If n = 2, then any element C € A2V*® A! can be expressed as f83; A 3>. Hence,
by Proposition 3, we have C' € 3, for i = 1 ~ 6, which implies ¥; = A2V*® A!. Next, in the
case m = 1, it is easy to see that any element of 3, ¥, ¥y, X (resp. 33, X5) is expressed
in the form x5, A B, (resp. 1§2). (Note that i ABa+B1iABs+B2ABs = (Bi+B2) A(Ba+P3),
and it is decomposable.) In particular, the variety 3; = ¥p = 3, = Xg coincides with
the set of decomposable elements of A2V* and X3 = Y5 is equal to the whole space. The
dimension of ¥.; is easily determined by calculating the dimension of the isotropy subgroup
of 81 A By (# 0) under the action of the general linear group GL(n, K), because GL(n, K)
acts transitively on the set ¥;\{0}. We omit the explicit calculations.

Next, we consider the case n > 3and m > 2. If C = aAB € ¥;\X4, then by Proposition
7, the parametrization of C' by « and / has the freedom which is expressed uniquely by
the pair (k, f) € K x A'. Hence, we have dim¥; = dimV*® A’ +dim V* — 1 —dim A! =
(n—1)(m+1).

For the variety Yo, we first assume m > 3, and C' € Y5\, i.e., C satisfies (Cp),
(Cy), but not (Cp). Then, using a suitable basis {e;}, the set {Ci2, Ci3,Ca3} is linearly
independent, and as stated in the proof of Lemma 5, we have

Chi = a;Ci2 — b;C3,

Coi = ¢;Ch2 — bi023,
Csi = ¢;Ci13 — a;Cys
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for 4 < i < n. In addition, other Cj; is also expressed in terms of {Cis, Ci3,Ca3} and
{ai, bi, ci}a<i<n. Since these parameters are uniquely determined by C, we have dim ¥, =
3m+3(n—3) =3(n+m—3). If m =2, any element C € ¥, is contained in ¥; because it
satisfies conditions (Cp) and (Cg). (Note that condition (Cgp) is automatically satisfied in
the case m = 2.) Conversely, since any element C € ¥; is expressed as (f1 81 + f252) A B3
in the case m = 2, we have ¥; C ¥ by Proposition 3 (1). Hence, we have ¥; = X5, and
in particular, dim 3y = dim 3; = 3(n — 1), which is equal to 3(n + m — 3).

For the variety X3, we take an element C' € ¥3\X5. Then, from the condition C ¢ ¥,
we may assume that {Cis, Ci3} is independent, and other Cj; is uniquely expressed as
a linear combination of {Cis, C13} because the number of variables is reducible to two.
Hence, we have dim X3 = 2m + {(}) — 2} x 2 =2(}) + 2m — 4.

Next, any element of 3, is expressed as f5; AB>. As showed above, the dimension of the
variety of decomposable elements of A2V* is 2n — 3, and the degree of freedom of f is m.
Since the scalar multiplication appears in common, we have dim¥, = (2n —3)+m —1=
2n+m — 4.

For the variety X5, any element of Y5 is expressed in the form f€2, and by the same
reason as above, we have dim Y5 = (’2’) +m — 1.

Finally, for the variety 34, we take an element C' € ¥6\X,. Then, since it does not
satisfy (C7), we can apply Lemma 4. As stated in the proof of this lemma, {Cis, C13}
is linearly independent, and in addition, we have Cy4 ~ Cy, € (Ci2,C13) from condition
(Cs). Hence, we may put Cy; = b;C12 + ¢;C13 for 4 < i < n. Since other C;; is expressed
as

C,'j = a]-Cli — CLZ'CU

for some a; (a; = —1), C is parametrized by {Ci2,C13, a9, - ,Qp,bay -+ by, Cay- -, Cn}-
It is easy to check that these parameters are uniquely determined by C, and therefore, we
have dim X =2m+ (n—1)+2(n—3) =3n+2m — 7. q.e.d.

We remark that the exceptional case n = 2 or m = 1 in this theorem corresponds
to the case where the action of the product group GL(n, K) x GL(m, K) on A?V* @ Al
reduces to the single group GL(m, K) or GL(n, K), i.e., the case where the 3-tensor space
A2V* ®@ A' is reduced to a 1- or 2-tensor space. And so we must treat separately to
determine the dimension of the variety, though two equalities dim ¥4, = 2n +m — 4 and
dim Y5 = (Z) + m — 1 always hold without the assumption n > 3 and m > 2.
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