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Abstract

Let p be an odd prime number and F a number field. Let K =
F((p) and A = Gal(K/F). Let San be the Stickelberger ideal of the
group ring Z|[A] defined in the previous paper [8]. As a consequence
of a p-integer version of a theorem of McCulloh [15, 16], it follows that
F has the Hilbert-Speiser type property for the rings of p-integers of
elementary abelian extensions over F' of exponent p if and only if the
ideal Sa annihilates the p-ideal class group of K. In this paper, we
study some properties of the ideal Sa, and check whether or not a
subfield of Q((,) satisfies the above property.

1 Introduction

Let p > 3 be a fixed odd prime number. Let F,. be the finite field with
p" elements, and let I', = F;; and G, = F;T be the additive group and
the multiplicative group of F'., respectively. For a number field F', denote
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by Cl = Cl(Op[l';]) and R = R(Op[[';]) the locally free class group of
the group ring O[] and the subset of classes realized by rings of integers
of tame I',-Galois extensions over F', respectively. Here, Op is the ring of
integers of F'. As G, naturally acts on I';, the group ring Z[G,] acts on CI.
McCulloh [15, 16] characterized the realizable classes R by the action on C1
of a naturally defined Stickelberger ideal S, of Z[G,]. On the other hand,
we defined in [8] another Stickelberger ideal Sy of Z[H] for each subgroup
H of the multiplicative group F;f in connection with a normal integral basis
problem (for the definition, see Section 2). The Stickelberger ideal Sy is
a “H-part” of McCulloh’s &7, and when H = F;, it equals &7 and the
classical one for the extension Q((,)/Q. For the ideal Sp, the following
assertion (Theorem 1) holds as a consequence of a p-integer version of the
above theorem of McCulloh. For details, see Section 7. A direct and simpler
proof is given in [8].

Let F' be a number field, Op the ring of integers, and O% = Or[1/p]
the ring of p-integers. Let Clp and Cl% be the ideal class groups of the
Dedekind domains Op and O, respectively. Letting P be the subgroup
of Clp generated by the classes containing a prime ideal of O over p, we
naturally have Cl}, = Clp/P. A finite Galois extension N/F with group
' has a normal p-integral basis (p-NIB for short) when O is cyclic over
the group ring Op[I']. We say that F' satisfies the condition (H,) when any
cyclic extension N/F' of degree p has a p-NIB, and that it satisfies (H,, )
when any abelian extension N/F' of exponent p has a p-NIB. It is known
that when F' = @Q, these conditions are satisfied for any p. This is shown
similarly to the classical theorem of Hilbert and Speiser. Let K = F'((,) and
A = Gal(K/F). We have a natural embedding

VA= FY, o—i

with (¢ = ¢, and we identify A with the image H = Hp = 1(A). Then, the
Stickelberger ideal Sx = Sy naturally acts on the class group Cl%.

Theorem 1 Let F' be a number field. Let K = F((,) and A = Gal(K/F).
Then, the following three conditions are equivalent.

(I) F satisfies (H,).

(II) F' satisfies (H,, ).

(IIT) The Stickelberger ideal Sa annihilates the class group Clh .

For p <19, it is known that the class number of Q((,) is one (cf. Wash-
ington [19, Theorem11.1]), and hence it follows from Theorem 1 that any
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subfield F' of Q((p) satisfies (HJ).

The purposes of this paper are (a) to study some properties of the ideal
Sy, and as an application, (b) to check whether or not a subfield of Q((,)
satisfies the condition (H) for 23 < p < 499. As a consequence of our re-
sults, we propose the following conjecture in Section 3.

Conjecture. Let p be a prime number with p > 23 and F' a subfield of
Q(¢y) with F # Q. If [F: Q] > 2 or p = 1 mod 4, then F does not satisfy
(H,) except for the case where p =29 and [F': Q] =2 or 7.

When 23 < p < 499, this assertion is valid for any F'. It is also valid for
any p > 23 if [Q((,) : F] <4 or [Q((y) : F] =6. When p = 3 mod 4 and F
is the quadratic subfield of Q((,), the matters seem to be more complicated.
For these, see Proposition 4 and Remark 2 in Section 3.

Remark 1. (1) A relation between Stickelberger ideals and Galois mod-
ule structure of rings of integers was observed first by Hilbert [6, Theorem
136] in his alternative proof of the classical Stickelberger theorem for the ideal
class group of Q((,). After Hilbert, this connection was pursued by Frohlich
[3], McCulloh [15, 16], Childs [1], etc. For details, see Frohlich [4, Chapter
IV]. (2) For the rings of integers in the usual sense, a result corresponding to
(but weaker than) Theorem 1 is given in [9, Theorem 5]. It is obtained from
the above mentioned theorem of McCulloh.

This paper is organized as follows. In Section 2, we recall the definition
of the ideal Sy, and give several properties of Sy. In Section 3, we derive
corollaries on the property (H,) from Theorem 1 and the results in Section
2. In Sections 3-6, we prove the results in Section 2. In the final section,
we give the p-integer version of McCulloh’s theorem, and derive a part of
Theorem 1 from this.

2 Results

Let us first recall the definition of the Stickelberger ideal associated with
a subgroup of F ;. Let H be a subgroup of F';. For an integer i € Z, i

denotes the class in F, represented by 7. For an element i € F;, we often



write o; = 1. For an integer r € Z, let

0, =0, =3 lﬁ] o' e Z[H).
i p
Here, in the sum Y°,’, 7 runs over the integers with 1 <i<p—1and i € H,
and for a real number z, [z] denotes the largest integer < z. Let Sy be the
submodule of Z[H| generated by 6, for all integers r over Z:

SH:<9,~|TEZ>Z.

This is an ideal of Z[H] as 0,0, = 6. — rf, for 5 € H ([8, Section 2]).
Let p be a generator of the cyclic group H. We put

Ny =1+p+p*+---+ o,

and
], if |H| is odd
MMTY 14+ p+p2 4o+ pH/2Lif |H| s even.

For an element x € Z[H|, let (x) = vZ[H] for simplicity. We see that the
ideal (ny) does not depend on the choice of p since for integers n, £ > 1 with
(n, k) =1, we have

I+ X+ + X" 1+ XF 4+ (X!
in the polynomial ring Z[X].
Lemma 1 We have (Ng) C Sy C (ng).

Let A(F') be the class number of a number field I, and let A, be the relative
class number of Q((,). For groups A and B, we write A < B when A is a
subgroup of B.

Theorem 2 For any subgroup H of F, the quotient (ng)/Su is a finite
abelian group, and the following assertions hold.

(I) When H = F;, |(ng)/Su| = h, .

(IT) Let A and B be subgroups of F; with A < B. Then, the finite abelian
group {(na)/Sa is isomorphic to a subquotient of (ng)/Sp. In particular, the
order and the exponent of (na)/Sa divide those of (ng)/Sg, respectively.

(III) When |H| =1, 2, 3, 4 or 6, we have Sy = (ng).



Theorem 3 Let p = 3 mod 4, and let H be the subgroup of F; of order
(p—1)/2. A prime number q divides the order of Z[H]/Sy = (nu)/Su if
and only if one of the following conditions is satisfied :

(i) ¢ divides the quotient h /h(Q(v/=p)),

(ii) ¢ divides both p — 1 and h(Q(\/—p))-

It is known that h, = 1 if and only if p < 19. For this, confer Uchida
[17] or [19, Corollary 11.18]. Hence, we obtain the following corollary from
Theorem 2.

Corollary 1 When p <19, Sy = (ng) for any H < F ;.

We obtain the following numerical result from Theorem 3 using the table
of Wada and Saito [18] on the class numbers of imaginary quadratic fields
and the tables in [19, pp. 412-420] and Lehmer-Masley [14] on the values of
h; .

P

Proposition 1 Let p be a prime number with 23 < p < 499 and p =
3mod 4, and let H be the subgroup of order (p —1)/2.

(I) For p =23, Sy = (nu).

(II) We have ({nm)/Su) @ Fy # {0} for all prime numbers q dividing h,,
when p = 31, 43, 67, 71, 131, 139, 163, 199, 211, 283, 307, 331, 367, 379,
463, 499.

(IIT) For any p not in (I) nor in (II), ((ng)/Sy) ® F, = {0} for some

prime number q dwiding h,, and it is nontrivial for some other q.

Using Theorem 3 and Proposition 1, we can show the following:

Proposition 2 Let p and H be as in Theorem 3. Then, we have Sy G
(ng) when p > 31.

For those p (< 499) and H not dealt with in Proposition 1, we practiced
some computer calculation on (ng)/Sg, and obtain the following numerical
result.

Proposition 3 Let p be a prime number with 23 < p < 499, and let H
be a proper subgroup of F). Assume that |[H| < (p —1)/2 or p =1 mod 4.
Then ((ng)/Su)® F, is nontrivial if and only if the triple (p, (p—1)/|H|, q)
15 one of the following :

(149, 2, 3), (277, 2, 2), (277, 4, 2), (293, 2, 3), (313, 2, 37), (337, 2, 17),



(349, 2, 2), (349, 4,2), (397, 2, 2), (397, 4, 2), (401, 2, 41), (409, 2, 5),
(331, 5, 3), (331, 10, 3).
In particular, we have ((ng)/Sy) ® F, = {0} for some odd prime factor
q of hy except for the case p = 29 where h, = 8 and Sy = (ng) for any
H (# F). Further, we have Sy = (ng) for p and H not contained in the
above list.

From Proposition 3, it is natural to propose the following conjecture.

Conjecture A. Let p be a prime number with p > 23 and H a proper
subgroup of F . If |[H| < (p—1)/2 or p =1 mod 4, then ((ng)/Suy) ® Fq =
{0} for some odd prime number ¢ dividing &, except for the case p = 29.

We obtained Proposition 3 as follows. First, we calculated whether or not
((ng)/Su) ® F, is trivial for each prime number ¢ up to 2'®, and observed
that (1) for each prime p in Proposition 3, ((ng)/Sy) ® F, # {0} happens
quite rarely (and hence Sy is very large in (ny)) and that (2) for primes p in
Proposition 1, the opposite phenomenon occurs. A part of Theorem 2 and
Theorem 3 were obtained after these computation and observation.

Let us briefly explain the computation. For simplicity, we restrict our-
selves to the case where h = |H| is odd. Then, Z[H]/Sy is a finite abelian
group by Theorem 2. Hence, as an abelian group, Sy is freely generated by
h elements. Further, these h elements generate Q[H| over Q. For a finite
number of elements o, 3, * * * in Z[H], let (o, (3, * * *)  be the submodule
of Z[H| generated by these elements over Z. From the definition, we can
show that

St = (0, Ng|1<r<p-1)z
= (0, Ny, h, |[1<r<p-1)z. (1)

For the first equality, see Remark 3 in Section 4. The second equality holds
by Theorem 2. Therefore, there exist polynomials f, € Z[T] (1 < r < p)
with indeterminate 7" such that deg f, < h — 1 and

Su=(f(p) by 1< 7 <p)g.

As h, € Sp, the polynomials satisfying these two conditions are determined
modulo h; . Starting from these polynomials f.(7") (or the above expression



for Si), we can inductively calculate a basis {e, }o<n<n—1 0f Sy over Z such
that

n
:Zai,npZ and  Gnplaee

for n > ¢. From this, it follows that

To calculate e,, we used a version of the Gaussian elimination method over
Z (cf. Knuth [13, 4.6]).

Since h,, is contained in Sy by virtue of Theorem 2, all the polynomials
which appear in the calculation (such as f.) are determined modulo A, .
Hence, we can choose them so that their coefficients are non-negative and
less than h;. Namely, their coefficients do not become too large. This is a
reason that we were able to complete the calculation.

For example, we obtained when (p, |[H|) = (331, 33),

Sp={p(p+2),3|0<i<3l)y,
with p = o3 (= 05 /1) and when (p, |H|) = (349, 87),
Su= (P’ +p+1),20,2]0<i<84)y

with p = o949 (= aélfpmm). Here, 3 (resp. 2) is a primitive root modulo 331
(resp. 349).

3 Corollaries

Let F', K and A be as in Theorem 1. As in Section 1, we identify A with a
subgroup H = Hp of F'; through the Galois action on ;. As the conditions
(H,) and (H},,,) are equivalent, we refer only to (H,) in what follows. The
following assertion follows immediate from Theorems 1 and 2, and contains
[8, Corollaries 1, 2].

Corollary 2 Under the above setting, the following conditions are equiv-
alent if [K : F] < 3.

(i) F satisfies (H)).

(ii) K satisfies (H).

(iif) A = 1.



When [K : F]is even, let J € A be the automorphism of order 2. For an
odd prime number g, let Cl}(q)~ = Cl%(g)” " be the odd part of the Sylow
g-subgroup Cly(q).

Corollary 3 Let the notation be as above. When [K : F] is odd, F does
not satisfy (H,) if there exists a prime number q with q|h’ and q th,. When
[K : F| is even, F' does not satisfy (H,) if there exists an odd prime number

q with Cly(q)~ # {0} and gt h,, .

Proof. Because of Theorem 2, the condition g { h, implies that SA @ Fy =
naF,[A]. Therefore, the first assertion follows from Theorem 1 as na = 1.
Let us deal with the case where [K : F] is even, assuming the existence of an
odd prime number q with Cli(¢)~ # {0} and ¢ { h,. Let c be a nontrivial
class in Cl%(q)~ of order q. Then, ¢/ = ¢7'. On the other hand, J — 1 is
an element of SA ® F, = naF,[A] as J — 1 is a multiple of na. Therefore,
if F' satisfies (H}), then ¢/ = ¢ by Theorem 1, and hence ¢* = 1. This is a
contradiction as c is of order ¢. O

In the following, let K = Q((,) and let F be a subfield of K. In this case,
we have Cl% = Clp as the unique prime ideal of F' over p is principal. As
we mentioned in Section 1, the condition (H,) is satisfied for F' = Q. So, we
deal with the case F' # @ in what follows. Let A = H = Gal(K/F). The
following is shown similarly to Corollary 3.

Corollary 4 Let the notation be as above. When [K : F] is odd, F does
not satisfy (H,) if there exists a prime number q with g|h, and Sx @ Fq =
F,A]. When [K : F] is even, F' does not satisfy (H,) if there exists an odd
prime number q with glh, and San ® F, = naF [A].

Let KT = Q(cos(27/p)) and let Clx be the kernel of the norm map
Clg — Clg+. Let hy = |Clg| and h} = |Clg+|. Then, we have h, = h/h.

Corollary 5 Let the notation be as above, and let G = Gal(K/Q) = F ;.
Assume that by =1 and that h; is odd and square free. If the exponents of
the abelian groups (na)/Sa and (ng)/Sc are equal, then F satisfies (H,).

Proof. By the assumptions and Lemma 5 (in Section 5), we see that

SAZ|G] N (ng) = Sg.



Further, we have Clx = Cly as h; = 1. By the classical Stickelberger
theorem (cf. [19, Theorem 6.10]), S¢ annihilates Clg. Let J be the complex
conjugation in G. We have 25x C (1 + J)Sa + (1 — J)Sa in Z[G]. Clearly,
(1+ J)Sa annihilates Cl; = Clg. On the other hand, (1 — J)Sa annihilates
Clg since (1 — J)Sa € SAZ[G] N (ng). Therefore, 255 annihilates Clg. As
hy is odd, it follows that Sa annihilates Clk. Hence, F' satisfies (H,) by
Theorem 1. O

From the corollaries and Propositions 1 and 3, we obtain the following :

Proposition 4 (I) Let p be a prime number with 23 < p < 499 and let F
be a subfield of K = Q((,) with FF # Q. If [F : Q] > 2 or p =1 mod 4, then
F does not satisfy (H,) except for the case where p =29 and [F: Q] =2 or
7.

(IT) When p =29 and [F : Q] =2 or 7, F satisfies (H)).

(IIT) For any p > 23 and any subfield F' of K = Q((,) with [K : F| =
1,2,3,4 or6, F does not satisfy (H,) except for the case where p =29 and
[K : F] =4.

(VI) Let F be the quadratic subfield of Q((p). For p =23 and any prime
number p in the third assertion of Proposition 1, F' does not satisfy (HI’,).

Proof. First, we show the assertion (I). When [K : F| < 2, it is imme-
diate from Corollary 2 as h, > 1. When p # 29 (and [K : F| > 2), the
assertion follows from Proposition 3 and Corollary 4. When p = 29 and
[F': Q] = 4, we have h = 8 and Sy = (ny) = Z[H] by Proposition 3 where
H = Gal(K/F). Hence, the condition (H)) is not satisfied for this case by
Corollary 4. Thus, the assertion (I) holds in all cases. The assertion (III)
follows from Theorem 2(III), Corollaries 2, 4 and the assertion (I) for the
case p = 29. This is because h, is a power of 2 if and only if p < 19 or
p = 29 by Horie [7]. The assertion (VI) follows from Corollary 4.

Let us show the assertion (II). Let p = 29, K = Q(({,) and G =
Gal(K/Q) = (p). For each positive divisor ¢ of p — 1, let F; be the sub-
field of K with [F; : Q] = i, and let H; = Gal(K/F;) = (p*). It is known that
h, = 8 and h; = 1. In particular, Clg = Cl). Further, it is known that

Clx = (Z/2)® (2)

(see Iwasawa [11, page 244] or [19, page 412]). First, let us show the asser-
tion for F' = F;. We have Sy, = (ng,) by Theorem 2(III) or Proposition
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3. We show that ny, annihilates Cli. There are six nontrivial Qz-valued
characters of the cyclic group H, of order 7, and they are divided into two
Q,-equivalent classes. Here, @, is the field of 2-adic rationals, and Q, is
the algebraic closure of Q,. Let x1 and x» be representatives of the two
classes, respectively. Let xo be the trivial character of Hy. Regarding Cly
as a module over Z,|[H,], we can canonically decompose Clk as

Clg = Cly = Clg(x0) ® Clx(x1) ® Cli(x2).

Here, Clx () is the x-part of the Z5[H,]-module Clyx. We have Cly(xo) =
{0} as the class number of the subfield F} of K corresponding to H, is one
(cf. Hasse [5, Tafel II]). For a nontrivial character x of Hy, let O, = Z5[x]
be the subring of @, generated by the values of x over Z,, where Z, is the
ring of 2-adic integers. We can naturally regard Clg(x) as a module over
O,. Then, since |0, /2| = 8 = h,, we see that

Clx = Cly = Clg(x) = 04/2 (2 (2/2)%)

for x = x1 or xo. (This assertion is essentially contained in [11]. Actually,
Iwasawa obtained (2) in a similar way.) From this, it follows that H; acts
trivially on the (O, /2)[H7]-module Clx = Clk(x). Therefore, ng, =1+ p’
annihilates Clg = (Z/2)®. Hence, Sy, annihilates Clg, and F; satisfies
(H,) by Theorem 1.

Next, we show the assertion (II) for F' = F,. We have Sy, = (ng,) by
Proposition 3. The elements Ny, and Ng,, of Z[G] annihilate Clg since the
class groups of Fy and Fi, = K% are trivial (cf. [19, page 421]). We see
however that

nmy = Nuy + (0° + 0%+ p'°) (2 — Ni,,).-

Hence, Sy, annihilates Cly, and F; satisfies (H;,) by Theorem 1. O

In view of Conjecture A and Proposition 4, we can propose the following

Conjecture B. Let p be a prime number with p > 23, and let F' be a
subfield of Q((,) with F' # Q. If [F': Q] > 2 or p = 1 mod 4, then F' does
not satisfy (H,,) except for the case where p =29 and [F': Q] =2 or 7.

Remark 2. For the primes in Proposition 1(II), A, is square free only
when p = 43, 67 (see the tables in [19, pp. 412-420] and [14], or the table
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of Yamamura [20]). For p = 43,67, hl = 1 and h; is square free and
odd. Therefore, we see that F' = Q(,/—p) satisfies (H,) for p = 43, 67 by
Proposition 1(II) and Corollary 5. For the other primes p in Proposition
1(II), we did not check whether or not the quadratic subfield satisfy (H,)
mainly because we have, at present, no exact data for the class group of K+
(cf. [19, pp. 420-421]).

4 Proof of Theorem 2(I)

For x € Z and a € Q, we easily see that

[z +a] =z + [a], (3)
and | el ifagZ
[I_a]:{m—[a], ’ ifae Z. (4)

For z € Z, let (z), be the unique integer satisfying 0 < (z), < p — 1 and
(z), = z mod p. Clearly, we have

x = E] p+ (),

Using this and (3), we easily show the following simple formulas.

(=z)p=p—(z), whenptuz. (5)
[xy(z)p] — [x(yz)p] i ly(z)P] fory, 2 € Z. (6)
p p p
Let H = (g) be a subgroup of F' of order h, and let p = 0,. By definition,
h=1 T (g _
0=y =3 |10 @
i=0

When |H| = 2/ is even, let
£-1 {—1—i
(g ;
D

1=0 p
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and put

bo— . — Xur+(r—1), ifpyr
r— VHr = Xuy+r, if p|r.

We see that Ng = —0_; € Sy. Therefore, Lemma 1 follows immediate from
the following:

Lemma 2 When |H| is even, we have 6, = png#,.

Proof. By (7), we see that

14

[

[ £

e_

Noting that ¢ = —1 mod p in the last term, we obtain the assertion using
(4) and (5). O

Proof of Theorem 2(I). Let £ = (p—1)/2, H = F = (p), and J = p*.
Let R=Z[H|,S=8u, R~ =(J—1)R,and S~ = SNR". In [10], Iwasawa
proved that

\R™/S7|=h,
(cf. [19, Theorem 6.19]). Let n = ny and A = (n). We see that R~ C A
as J —1 = (p—1)n. We show that there exists a submodule R' of A with
R'n R~ = {0} such that

A=60,Z+(R®R) and S2R. (8)

Using this, we easily see that R~/S~ = A/S considering the natural homo-
morphism R~ — A/S, and we obtain Theorem 2(I).

Let us show the assertion (8). Let Z[T] be the polynomial ring with
indeterminate 7. An element o of A can be written in the form o = nf(p)
for some f € Z[T]. Using the relation n(p — 1)(p® + 1) = 0, we see that the
polynomial f is uniquely determined by o modulo (T — 1)(T% + 1) and that
a = nf(p) = 0 if and only if f is a multiple of (7' — 1)(T* + 1). Thus, the
map

nf(p) = f(T) modulo (T —1)(T*+ 1)

12



defines a well defined isomorphism between the Z[H]-module A and the

Z|[T)-module Z[T]/((T —1)(T*+1)). We identify these two modules by this
isomorphism. Consider the following homomorphism over Z[T'].

zi1] _ z1]

v:d = Bi= Ty ® gy

nf(p) = (f mod (T — 1), f mod (T*+1)).
We easily see that ¢ is injective. Define submodules R, and R, of B by

Ri = o({(p'+n)) = (2, T - 1)/(T - 1) & {0}
Ry = o(R7)=¢({(p—1n)={0}& (' = 1,2, T+ 1)/(T* +1).

Then, it follows that
Y(A)DRi®Ry, and B/(Ri®Ry)=Z/2® Z/2.
By Lemma 2 and the definition of 6,, we see that
0(0)=(1,%*) € R ®Ry, and ((p*+1)8) = (2, 0).

The latter implies that R; C ¢(S). On the other hand, we see that p(A) # B
since A is cyclic over Z[H| but B is not cyclic over Z[T]. From the above,
we see that

0(A) =¢(0:)Z + (R ®R,) and R; C ¢(S).

We obtain the assertion (8) from this. O

Remark 3. We can show the first equality in (1) using (3) and 6_; =
(9]-],_1 = _NH

5 Proofs of Theorem 2 (II) and (IIT)

In this section, we prove the finiteness of (ny)/Sy for general H and Theorem
2 (II), (III). In the following, A and B are subgroups of F with A < B.

Lemma 3 Sz C S4Z[B] N (ng).
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Proof. In view of Lemma 1, it suffices to show that Sp C S4Z|[B]. Let
|A| =a, |B| = at, B =(g), and p = 0,. By (6) and (7), we see that

t—1 a—1 ti+A
_ r\g —ti
03,7‘ = E p A E lgl P 122
A=0 =0

p
= :2:‘; P (Oargr = T0a00) - 9)

The assertion follows immediate from this. O

Lemma 4 There is a natural injective homomorphism

(np)
SAZ[B] N <tlB) '

p: (nA)/SA —

Proof. Let B = (p) and ¢t = |B/A|. Then, as A = (p'), an element of
(ng) = naZ[A] is of the form nyf(p') for some polynomial f(T) € Z[T].
Consider the homomorphism

. (np) . t t
@ <nA> — SAZ[B] N <nB)7 nAf(p) — [an(,O )]
Here, [npf(p')] is the class containing ngf(p'). As nalnp in Z[B], it is clear
that ¢ is well defined and that S4 C ker . Let us show that ker¢p C Sj4.
There are three cases; (i) |B| is odd, (ii) |A| is even, and (iii) |A| is odd and
|B| is even.

The case (i). In this case, ng = ng = 1. Assume that f(p') € SaZ[B].
Then, it follows that

t—1
f(Pt) = Z a,\PA
A=0
with some ay, € Sy for each 0 < A < t—1. This implies that f(p') = ap € Sa.

The case (ii). In this case, we have ng = (1 4+ p+ -+ p"')ns. Assume
that f(p')ng € S4Z[B]. Then, it follows that

t—1
F(mp = F(Pmal+p+---+p"1) =3 anp
A=0
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with some ay € Sy for each 0 < A < ¢ — 1. This implies that f(p')na = g €
Sa.

The case (iii). Let t = 2s and |A| = a. Assume that f(p**)np € SaZ[B].
Then, it follows that

2s—1

F(0®)np = f(p*) (L +p+---+p"") =D axp’
A=0

with some o) € Sy for each 0 < A < 2s—1. Let £ = (a —1)/2+ 1 and
T = p** € A. From the above, we see that

1— £
FE*) A +7 4477 = (o) - T = a0 € a.

Let k be the least integer with /¥ = 1 mod a, and write ¥ = 1+aX for some
X € Z. 1t follows that

1—7t 1— 7
= <N €O

F(p*) -

The left hand side equals

F®) - (A+7+72 4 +1%)
— f(p%’) . {TaX _+_NA(1_+_7_a+._.+7_a(X—1))}
= f(p*) mod Sa.

The last congruence holds as Ny € Sa (Lemma 1). Therefore, we obtain
f(p*)=f(p*)ma€Sa. O

Proof of the finiteness of (ng)/Su and Theorem 2(II). The assertions

follow from Theorem 2(I) and Lemmas 3 and 4. O

Lemma 5 Assume that h, is square free. If the exponents of the abelian
groups (na)/Sa and (ng)/Sp are equal, then Sp = S4Z[B] N (npg).

Proof. This follows immediately from Lemmas 3 and 4. O

Proof of Theorem 2(III). By Theorem 2(II), it suffices to deal with the
cases where |[H| =4, 6. Let H = (g) and p = 0,.
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The case [H| = 4. Let r = (g9),- As 7> = —1 mod p, we see that
(¢®)p = (—9)p, = p— r. Hence, it follows that 2(g), < p < 2(¢%), > p.
Therefore, we may as well assume that (g), < p/2 replacing g with ¢* if
necessary. Then, it follows that fs = 1, and hence Sy = (ng) by Lemmas 1
and 2.

The case |H| = 6. Let 7 = (g),. We show that if 2r < p, then 2(¢?), < p,
and that if 2r > p, then 2(¢°), < p. As 7 is a primitive 6-th root of unity
in F), we have 7* = v — 1 mod p. From this, we see that 2r # 1 mod p. It
also follows that (¢?), = r — 1. From this, the first assertion follows. Next,
assume that 2r > p. Then, as 2r > p+1,

2(¢)p,=2(r-1)2zp-1L

However, the last equality does not hold as 2r # 1 mod p. Hence, we obtain
2(¢%)p > p- As g° = —g¢* mod p, it follows that (¢°), = p — (¢*), < p/2.

When 27 < p, it follows from the above that f; = 1, and hence Sy = (ng)-
When 2r > p, we see from the above that Si = (ng) replacing g with g°.
O

6 Proofs of Theorem 3 and Proposition 2

Let p be a prime number with p = 3 mod p. Let G = F, and let H be the
subgroup of G of order (p — 1)/2. Let G = (g) and p = 0,. Let x be an
odd character of G. Namely, x(p®1/2) = —1. We naturally regard x as a
homomorphism Z[G] — Z|p,-1]. Let xo be the trivial character of G. Let
0 = 0 or 1 according to whether p|r or p{r.

Lemma 6 Let x be an odd character of G. For any r € Z, we have

X( ) — { 2X(0H,r)a if X2 7é X0,
ar 2x(0ms) — (r=6:)(p—1)/2,  if X* = xo.

Proof. Let ¢ = (p — 1)/2. From (7), it follows that
C1 (g2 o B (g% o
X(0a,s) = l%} X(p™) + 30 [%] X(p~ D).
=0 1=0

By (7) and H = (p?), the first term of the right hand side equals x(6z).
Since £ = (p — 1)/2 is odd and Y is odd, the second term of the right hand
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side cquals
5 [ME50] sy = 5 [ME ),

We see from (4) and (5) that the last term equals

-5 (r= 0= (P22 ) ) = 0 = (- 8 Sxt )

=0

Now, the assertion follows from the above. O

Proof of Theorem 3. For a character x of GG, we easily observe that

) = 3 H @) =3 i (ri)y) w(i)

i=1 i=1
= (r—x(r))Biy-1, (10)
where
12! .
Bix-1=— Z ix (i
p =1

is the first Bernoulli number. For a prime number ¢, let Q, be the field of
g-adic rationals, Z, the ring of g-adic integers, and Q, the algebraic closure
of Q,. For a Q -valued character x of G or H, let 9, be the maximal ideal
of the integer ring of the subfield of @, generated by the values of x over Q,.

Let us show the “if” part of the assertion. Let ¢ be a prime number
satisfying the condition (i) of Theorem 3. By the classical class number
formula, we have

b /M@ =p TT (=3B ).

x2#xo0

where x runs over the odd characters of G with x? # xo (cf. [19, Theorem
4.17]). Hence, we see that Bj,-1 = 0 mod 29, for some odd Q,-valued
character x of G with x% # xo. Then, it follows from (10) and Lemma 6 that
X(0n,) = 0 mod Q, for all 7. Hence, we obtain the assertion. Let ¢ be a
prime number satisfying the condition (ii). Then, ¢ is odd as p = 3 mod 4.
By the class number formula, we have B;,-1 = 0 mod ¢ for the quadratic

17



character y associated with Q(,/—p). Hence, noting that ¢ is odd and ¢|p—1,
we obtain the assertion from (10) and Lemma 6 similarly to the above.

Let us show the “only if” part. Assume that a prime number ¢ divides
the order of Z[H|/Sy. First, we deal with the case ¢ { p — 1. In this case,
we have the direct decomposition

(Z[H]/Sn) ® Z, = ?((Z[H]/SH) ® Z,)(¥)-

Here, 9 runs over a complete set of representatives of the @ -equivalent
classes of the Q -valued characters of H, and (x)(¢) denotes the 1)-component.
Therefore, by the assumption, there exists a @ -valued character ¢ of H such
that ¢¥(0g,) = 0 mod 9y for all ». Let x be an odd character of G with
Xz = . Then, from Lemma 3 it follows that x(6q,) = 0 modulo Q, = Q,
for all r, and hence B;,-1 = 0 mod 9, by (10). We see from Lemma 6 that
x> # xo since ¢t p—1 and x(0g,) = ¥(0n,) = 0 mod 9Q,. Therefore, we see
that ¢ divides h; /h(Q(y/—p)) by the class number formula. Next, we deal
with the case g[p — 1. From the assumption, we have g|h, by Theorem 2.
Hence, g divides either , /h(Q(y/—p)) or h(Q(y/—p)). The assertion follows
from this. O

Proof of Proposition 2. Let p be a prime number with p = 3 mod 4. By
Theorem 3 and Proposition 1, it suffices to show that b, /h(Q(y/—p)) > 1
for p > 500. It is known that

1
log h, > Z(p— 2)logp —1.08 x (p—1)

for p > 221 (cf. [19, Proposition 11.16]). On the other hand, it is classically
known that h(Q(\/—p)) < p. This is an immediate consequence of the class
number formula for imaginary quadratic fields (cf. [19, Theorem 4.17] or [6,
Theorem 114]). Hence, it follows that

log (h, /M(Q(vV=P))) > g(p)
with the function

1 3
g(x) = leog:v - §logx —1.08 x (z —1).

We easily see that g(z) > 1 for all real numbers x > 500. The assertion
follows from this. O
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7 Appendix

In this section, we give the p-integer version of McCulloh’s theorem men-
tioned in Section 1, and derive a part of Theorem 1 from this. We add this
appendix for the convenience of the reader following a suggestion of the ref-
eree.

Let p be a prime number and F' a number field. Let K = F((,). Let
G = F; and I' = F; be the multiplicative group and the additive group
of the finite field F'), respectively. We write elements of G as o, = 7. We
naturally regard H = Gal(K/F) as a subgroup of G through its Galois ac-
tion on (. In this section, we simply write OI' (resp. FT') for the group
ring Op[I'] (resp. F[I']). Denote by Cl(O%I') and R(O%I') be the locally free
class group of the group ring O%I" and the subset of classes realized by rings
of p-integers of ['-extensions over F', respectively. For the precise definition
of Cl(ORT), see [4]. Later, we give a convenient description of Cl(O%I")
following McCulloh’s paper. Let CI°(O%I") be the kernel of the projection
Cl(ORT') = Cl%. Tt is known and easily shown that R(O%I') is contained in
Cl°(O%T). The multiplicative group G naturally acts on ' by

a’ =1 (11)

for 0; € G and @ € I'. Through this action, the group ring Z[G] acts on
the class group Cl(O%I"). The following is the p-integer version of the main
theorem of [16].

Theorem 4 (McCulloh). Under the above setting, we have
R(O,T) = CI°(O},.I")%.

To prove this theorem, all one has to do is to replace Op with O} in
McCulloh’s argument. From Theorem 4, it follows that R(O%.I) is a subgroup
of C1(O%I'). A number field F' satisfies the condition (H,) if and only if the
group R(OT) is trivial because of the cancellation theorem (Jacobinski [12],
Frohlich [2, page 117]).

In the following, we derive the equivalence (I) < (III) in Theorem 1 from
Theorem 4. (For the other equivalences, see [8].) For this purpose, we give
a convenient description of the class group Cl(O%I") following [16, page 13].
Let I(O%I') be the group of fractional ideals of ORI in FT, and let Ppr be
the subgroup consisting of principal ideals aO%I" for units « of FT. The
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group G acts on I(O%I') and the quotient I(OyI')/Ppr through its action
(11) on I'. Then, we have the following natural isomorphism compatible with
the G-action.

v Cl(ORT) 2 I(OFT)/ Pry. (12)
Let N/F be a I'-extension. As is well known, we have N = FT - v for some
element v € N. We see that O = Ay - v for some fractional ideal 2y of
O%I'. The class [2y] in I(O%I')/Ppr represented by 2y depends only on the
[-extension N/F. The image ((R(O%I")) is the subset of classes [2y] for all
['-extensions over F.

Let us look at the group I(O%I') more explicitly. Let xo be the trivial
character of I'. We fix a nontrivial character x of I' with values in K = F'((,).
Let p = o, be a generator of GG, where ¢ is a primitive root modulo p. Let
t =[G : H]. Then, p' is a generator of H = Gal(K/F') sending ¢, to (I-‘jt. For
a character ¢ of I' and an element oo = 3°, a,y of FT, let

Y(a) =3 anp(y),

where v runs over I'. We easily see that x, x4, - - -, 9"~ form a complete set of
representatives of the F-equivalent classes of nontrivial K-valued characters
of I'. From this, we see that the homomorphism

0 FT 5 FeKoKe oK

with
1

p(a) = (xo(@), x(a), x(a), -+, x*" ()

is an isomorphism of F-algebras. We easily see that
(O D) =0, 0Ok & ---® O.

Via the isomorphism ¢, a fractional ideal of ORI corresponds to the di-
rect sum of fractional ideals of the components of ¢(O%I'). The image
L(CI°(O,T)) equals the subset of I(O%I")/Prr consisting of classes contain-
ing fractional ideals A of ORI" for which the first component of ¢(A) is O%.
From the definition of ¥ (), we easily see that

t

Qo(aph) = (XO(a)v Xg)\ (CV), ) th_l (a)v X(a)p 3T XgA_l (a)pt) (13)
for 0 < A <t—1, and that

0(a®) = (xo(a), x(@)°, x*(@)%,---,x* " (a)?) (14)
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for 6 € H. Here, x" (a)® denotes the Galois action of § € H on the element
x? (@) of K. Namely, for each 0 < A < t — 1, the element p* acts on the
components of ¢(a) as a “cyclic permutation”, and 6 € H acts on them by
Galois action.

Proof of (I) < (IIT) in Theorem 1. First, assume that F' satisfies (H,).
Then, by Theorem 4, the Stickelberger ideal Sg annihilates the class group
CI°(OLT). Let r € Z be an arbitrary integer. By (9), we see that

t-1
HG,,,. = 0H,7‘ + Z p)‘S)\ (15)
=1
with some s, € Sy for 1 < A <t¢—1. Let 2 be an arbitrary ideal of O, and
let A be the ideal of O%I" such that

p(A)=0r@A® Ok ®--- @ O.
From (13), (14) and (15), we see that
(p(AaG,’r) =0L® Al @ ... (16)

On the other hand, it follows from the assumption and the isomorphism (12)
that
Aber = qOT

for some unit o € (FT)*. From this and (16), we see that 2977 = y(a)O%.
Therefore, the Stickelberger ideal Sy annihilates the class group ClY.

Conversely, assume that Sy annihilates Cl%. Then, we see from (13),
(14) and (15) that 6, annihilates the ideal of O%I" corresponding to

O, ®A BB Ay

via ¢. Here, 21; denotes an arbitrary ideal of O% . Therefore, R(O%I") = {0}
by Theorem 4 and (12), and hence F' satisfies (H,). O
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