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Abstract
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increasing solutions to quasilinear ordinary differential equations.
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1 Introduction

In the paper we consider the equations of the form

(|u′|α−1u′)′ + p(t)|u|β−1u = 0 (E)

under the following conditions:

(A1) α and β are positive constants satisfying α 6= β;
(A2) p(t) is a C1−function defined near +∞ satisfying the asymptotic condition
p(t) ∼ t−σ for some σ ∈ R as t →∞.

By condition (A2) equation (E) can be rewritten in the form

(|u′|α−1u′)′ + t−σ(1 + ε(t))|u|β−1u = 0, (E)

where ε(t) = tσp(t)− 1 satisfies limt→∞ ε(t) = 0. Of course, here and in what follows the
symbol “f(t) ∼ g(t) as t → ∞” means that limt→∞ f(t)/g(t) = 1. Some of preparatory
results for equation (E) are still valid for general equations than (E); so it is convenient
to consider the auxiliary equation

(|u′|α−1u′)′ + q(t)|u|β−1u = 0, (1)

where we assume that α and β satisfy condition (A1) and q ∈ C([t0,∞); (0,∞)). A
function u is defined to be a solution of equation (1) if u ∈ C1[t1,∞) and |u′|α−1u′ ∈
C1[t1,∞) and it satisfies equation (1) on [t1,∞) for sufficiently large t1.

It is easily seen that all positive solutions u(t) of (1) are classified into the following
three types according as their asymptotic behavior as t →∞:
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(I) (asymptotically linear solution):

u(t) ∼ c1t for some constant c1 > 0;

(II) (weakly increasing solution):

u′(t) ↓ 0, and u(t) ↑ ∞
(III) (asymptotically constant solution):

u(t) ∼ c1 for some constant c1 > 0.

Concerning qualitative properties of positive solutions, the study of asymptotic be-
havior of asymptotically linear solutions and asymptotically constant solutions are rather
easy, because their first approximations are given by definition. On the other hand, we
can not easily know how the weakly increasing positive solutions behave except for the
case of α = 1 ([1, 3]).

In [3, Section 20], equation (E) with α = 1 has been considered systematically, and
asymptotic forms of weakly increasing positive solutions are given by means of the pa-
rameters β and σ. When α 6= 1, as far as the authors are aware, there are no works in
which asymptotic forms of weakly increasing positive solutions are studied systematically.

Motivated by these facts in the paper we make an attempt to find out asymptotic forms
of weakly increasing positive solutions of (E) for the general case α > 0. Furthermore we
will also establish more than obtained in [3] for the case of α > β. In fact, some of our
results are new even though α = 1.

To gain an insight into our problem, we consider the typical equation

(|u′|α−1u′)′ + t−σ|u|β−1u = 0, (E0)

where σ ∈ R is a constant. Note that equation (E) can be regarded as a perturbed
equation of this equation. Equation (E0) has a weakly increasing positive solution of the
form ctρ, (c > 0, 0 < ρ < 1) if and only if min{α, β} + 1 < σ < max{α, β} + 1. This
solution is uniquely given by

u0(t) = Ĉtk, (2)

where

k =
α− σ + 1

α− β
∈ (0, 1), Ĉ = {α(1− k)kα} 1

β−α . (3)

From this simple observation we can see that asymptotic forms of weakly increasing
positive solutions of (1) may be strongly affected by that of the coefficient function q(t).
Furthermore we conjecture that weakly increasing positive solutions u of (E) behave like
u0(t) given by (2) and (3) if |ε(t)| is sufficiently small at ∞.

We will show that the above conjecture is true in many cases. In fact, we can obtain
the following theorems which are main results of the paper:

Theorem 1 Let α > β.
(i) Suppose that β + 1 < σ < α + 1. Then, every weakly increasing positive solution u

of (E) has the asymptotic form

u(t) ∼ u0(t) as t →∞,
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where u0 is given by (2) and (3).
(ii) Suppose that σ = α + 1; namely p(t) ∼ t−α−1 as t → ∞. Then, every weakly

increasing positive solution u of (E) has the asymptotic form

u(t) ∼ α−
1

α−β

(
α

α− β

)− α
α−β

(log t)
α

α−β as t →∞.

Theorem 2 Let α < β. Suppose that α ≤ 1 and 1/2 < k < 1(⇔ (α + β + 2)/2 < σ <
β + 1). Suppose furthermore that either

∫ ∞ ε(t)2

t
dt < ∞ (4)

or ∫ ∞
|ε′(t)|dt < ∞ (5)

holds. Then, every weakly increasing positive solution u of (E) has the asymptotic form

u(t) ∼ u0(t) as t →∞,

where u0 is given by (2) and (3).

Theorem 3 Let α < β. Suppose that α ≥ 1 and 0 < k < 1/2(⇔ α + 1 < σ <
(α+β+2)/2). Suppose furthermore that either (4) or (5) holds. Then, the same conclusion
as in Theorem 2 holds.

Remark 1. (i) In Theorem 1 the differentiability of p is actually unnecessary. Simi-
larly, in Theorems 2 and 3, the differentiability of p is unnecessary when (4) is assumed.

(ii) When α = 1 and ε(t) ≡ 0, Theorems 1, 2 and 3 have been obtained by [1] and [3,
Corollaries 20.2 and 20.3].

We note that existence results of weakly increasing positive solutions to (1) and (E)
are known for the case α > β. In fact, equation (E) has a weakly increasing positive
solution if and only if β +1 < σ ≤ α +1; see Remark 2 in Section 3. In contrast, it seems
that there are not such useful results for the case α < β. But we can show many concrete
examples of those equations that have weakly increasing positive solutions.

The paper is organized as follows. In Section 2 we give preparatory lemmas employed
later. In Section 3 we consider equation (E), as well as (1), under the sub-homogeneity con-
dition α > β. When q(t) is restricted to be functions such that 0 < lim inft→∞ q(t)/t−σ ≤
lim supt→∞ q(t)/t−σ < ∞ for some σ ∈ R, we can obtain a result which may be called
as asymptotic equivalence theorem for equation (1); see Corollary 8. Theorem 1 is a
direct consequence of this corollary. In Section 4 we consider only equation (E) under the
super-homogeneity condition α < β. The proof of Theorems 2 and 3 will be given there.
Other related results are found in [2,4,5,6].
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2 Preparatory lemmas

Lemma 4 Let w ∈ C1[t0,∞), w′(t) = O(1) as t → ∞, and w ∈ Lλ[t0,∞) for some
λ > 0. Then, limt→∞ w(t) = 0.

Proof. We have

|w(t)|λw(t) = |w(t0)|λw(t0) +

∫ t

t0

(|w(s)|λw(s))′ds

= |w(t0)|λw(t0) + (λ + 1)

∫ t

t0

|w(s)|λw′(s)ds.

By our assumptions the last integral converges as t →∞. Hence limt→∞ |w(t)|λw(t) ∈ R
exists. Since w ∈ Lλ[t0,∞), the limit must be 0. The proof is completed.

Lemma 5 Let u ∈ C1[t0,∞) and u′(t) ↓ 0 as t →∞. Then, tu′(t) ≤ u(t) for sufficiently
large t, and the function u(t)/t is decreasing near ∞.

Proof. Since

u(t) = u(t0) +

∫ t

t0

u′(s)ds ≥ u(t0) + u′(t)(t− t0),

we have
tu′(t)− u(t) ≤ t0u

′(t)− u(t0).

Noting the assumption u′(∞) = 0 we find that tu′(t)−u(t) < 0 near ∞. Since (u(t)/t)′ =
(tu′(t)− u(t))/t2, the proof is completed.

3 Sub-homogeneous case: α > β

Throughtout the section we assume that α > β. As a first step we give the growth
estimates for weakly increasing positive solutions of (1):

Lemma 6 Let u be a weakly increasing positive solution of (1). Then the following esti-
mates hold near ∞:

(
α− β

α

) α
α−β

{∫ t

t1

(∫ ∞

s

q(r)dr

) 1
α

ds

} α
α−β

≤ u(t)

≤
(

α− β

α

) α
α−β

{∫ t

t1

s−
β
α

(∫ ∞

s

rβq(r)dr

) 1
α

ds

} α
α−β

(6)

where t1 is a sufficiently large number.
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Note that
∫∞

sβq(s)ds < ∞ if equation (1) has a weakly increasing positive solution;
see (ii) of Remark 2 in the sequel.

Proof of Lemma 6. We may assume that u, u′ > 0 for t ≥ t1. Since u satisfies for
large t

u′(t)α =

∫ ∞

t

q(s)u(s)βds, (7)

and u is increasing, we have

u′(t)α ≥ u(t)β

∫ ∞

t

q(s)ds,

that is

u′(t)u(t)−
β
α ≥

(∫ ∞

t

q(s)ds

) 1
α

. (8)

An integration of this inequality on the interval [t1, t] will give

α

α− β

{
u(t)

α−β
α − u(t1)

α−β
α

}
≥

∫ t

t1

(∫ ∞

s

q(r)dr

)1/α

ds,

which proves the first inequality of (6). On the other hand, by the decreasing nature of
u(t)/t shown in Lemma 5, we find from (7) that

u′(t)α ≤
(

u(t)

t

)β ∫ ∞

t

sβq(s)ds.

Accordingly,

u′(t)u(t)−
β
α ≤ t−

β
α

(∫ ∞

t

sβq(s)ds

) 1
α

.

As before we can get the second inequality in (6). The proof is completed.

To give the main result in the section let us consider the two equations of the same
type:

(|u′|α−1u′)′ + q1(t)|u|β−1u = 0, (91)

and
(|u′|α−1u′)′ + q2(t)|u|β−1u = 0. (92)

Here, we assume that 0 < α < β and q1, q2 ∈ C([t0,∞); (0,∞)).

Theorem 7 Suppose that
q1(t) ∼ q2(t) as t →∞ (10)

and

C

∫ t

t0

s−
β
α

(∫ ∞

s

rβq1(r)dr

) 1
α

ds ≤
∫ t

t0

(∫ ∞

s

q1(r)dr

) 1
α

ds (11)

hold for some constant C > 0. If u1 and u2 are weakly increasing positive solutions of
equations (91) and (92), respectively, then u1(t) ∼ u2(t) as t →∞.

5



Corollary 8 Suppose that q1 and q2 satisfy (10) and 0 < lim inft→∞ q1(t)/t
−σ ≤

lim supt→∞ q1(t)/t
−σ < ∞ for some σ ∈ (β + 1, α + 1]. If u1 and u2 are weakly increasing

positive solutions of equations (91) and (92), respectively, then u1(t) ∼ u2(t) as t →∞.

Theorem 1 is an immediate consequence of Corollary 8. Indeed, to see (ii) of Theorem
1, it suffices to notice the fact that the equation

(|u′|α−1u′)′ + t−α−1

(
1− β

(α− β) log t

)
|u|β−1u = 0

has a weakly increasing positive solution given explicitly by

α−
1

α−β

(
α

α− β

)− α
α−β

(log t)
α

α−β .

Proof of Theorem 7. Put z(t) = u1(t)/u2(t), t ≥ t0, t0 being sufficiently large.
Then, z satisfies the equation

z′′ +
2u′2(t)
u2(t)

z′ +
u2(t)

β−1

α

[
(u2(t)z

′ + u′2(t)z)1−αq1(t)z
β − q2(t)u

′
2(t)

1−αz
]

= 0.

If z′(T ) = 0 for some T , then

z′′(T ) = α−1p1(T )u2(T )β−1u′2(T )1−αz(T )

(
q2(T )

q1(T )
− z(T )β−α

)
.

Thus, if z′ = 0 in the region z > (q1(t)/q2(t))
1/(α−β), then z attains a local minimum

here; while if z′ = 0 in the region 0 < z < (q1(t)/q2(t))
1/(α−β), then z attains a local

maximum here. Note that by our assumption limt→∞(q1(t)/q2(t))
1/(α−β) = 1. These simple

observations are used below.
Since Lemma 6 and conditions (10) and (11) imply that z(t) is bounded and bounded

from 0, we can put 0 < ` = lim inft→∞ z(t) ≤ lim supt→∞ z(t) = L < ∞. We claim that
` = L; that is limt→∞ z(t) ∈ (0,∞) exists. Suppose the contrary that ` 6= L. We treat the
following four cases separatively: (a)L ≥ 1 > `; (b)L > 1 ≥ `; (c)L > ` ≥ 1; (d)1 ≥ L > `.

Suppose that case (a) occurs. We can find two sequences {Tn} and {tn} satisfying

lim
n→∞

Tn = lim
n→∞

tn = ∞ (12)

and

lim
n→∞

z(Tn) = L, lim
n→∞

z(tn) = `, and tn < Tn < tn+1 for n = 1, 2, · · · . (13)

Since limt→∞(q1(t)/q2(t))
1/(α−β) = 1, we may assume that z(tn) < (q1(tn)/q2(tn))1/(α−β).

For sufficiently largr n ∈ N the minimum of z(t) on the interval [Tn−1, Tn] must be
attained at an interior point, say t∗ ∈ (Tn−1, Tn). Obviously, z′(t∗) = 0 and z′′(t∗) ≥ 0.
However, since z(t∗) ≤ z(tn) for sufficiently large n, we get a contradiction to the above
observation. Hence case (a) does not occur.
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Next suppose that case (c) occurs. As in case (a) we can find two sequences {Tn}
and {tn} satisfying (12) and (13). For sufficiently lage n ∈ N the maximum of z(t) on
the interval [tn, tn+1] must be attained at an interior point, say t∗ ∈ (tn, tn+1). Obviously,
z′(t∗) = 0 and z′′(t∗) ≤ 0. Since z(t∗) ≥ z(Tn) and z(Tn) > (q1(Tn)/q2(Tn))1/(α−β) for
sufficiently large n, we get a contradiction as before. Hence case (c) does not occur.

We can show similarily that the other cases can not occur. Therefore limt→∞ z(t) =
limt→∞ u2(t)/u1(t) = m ∈ (0,∞) exists. Finally, by the L’Hospital’s rule we have

m = lim
t→∞

u1(t)

u2(t)
=

(
lim
t→∞

u′1(t)
α

u′2(t)α

)1/α

=

(
lim
t→∞

[u′1(t)
α]′

[u′2(t)α]′

)1/α

=

(
lim
t→∞

−q1(t)u1(t)
β

−q2(t)u2(t)β

)1/α

= mβ/α;

that is m = mβ/α. Since α > β, we have m = 1. This completes the proof.

Remark 2. Concerning the existence properties of weakly increasing positive solu-
tions, we know the following results:

(i) If ∫ ∞
tβq(t)dt < ∞; and

∫ ∞ (∫ ∞

t

q(s)ds

)1/α

dt = ∞, (14)

Then, equation (1) has weakly increasing positive solutions [2, Example 1].
(ii) Conversely, if equation (1) has a weakly increasing positive solution, then we can

show that
∫ ∞

tβq(t)dt < ∞; and

∫ ∞
t−

β
α

(∫ ∞

t

rβq(s)ds

) 1
α

ds = ∞. (15)

In fact, the first condition in (15) follows from [2, Example 2]; while the second one
is an immediate consequence of the estimates in Lemma 6. In paricular, when α = 1, we
find that conditions (14) and (15) are the same; that is, equation (1) (with α = 1) has a
weakly increasing positive solution if and only if (14) (with α = 1) holds.

4 Super-homogeneous case: α < β

Throughout this section we assume that α < β. In this case the situation seems to be
more complicated than in the previous case. The main purpose of the section is to give
the proofs of Theorems 2 and 3. To this end we need several lemmas.

Lemma 9 Let 0 < lim inft→∞ q(t)/t−σ ≤ lim supt→∞ q(t)/t−σ < ∞ for some σ ∈ (α +
1, β +1). Then every weakly increasing positive solution u of (E) satisfies u(t) = O(u0(t))
and u′(t) = O(u′0(t)) as t → ∞, where u0 is the exact solution of (E0) given by (2) and
(3).

Proof. As in the proof of Lemma 6 we obtain (8). An integration of (8) on the
interval [t,∞) will give

u(t) ≤ C1

{∫ ∞

t

(∫ ∞

s

q(r)dr

)1/α

ds

}−α/(β−α)

≡ C2u0(t),
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where C1 and C2 are positive constant. Furthermore, by (7) we find that

u′(t) =

(∫ ∞

t

q(s)u(s)βds

)1/α

≤ C3

∫ ∞

t

s−σ+kβds = C4t
k−1 = O(u′0(t)) as t →∞,

where C3 and C4 are positive constants. This completes the proof.

Lemma 10 Let σ ∈ (α+1, β +1), and u a weakly increasing positive solution of equation
(E). Put s = log u0(t) and v = u/u0. Then

(i) v, v̇ = O(1) as s →∞, and v + v̇ > 0 near ∞, where · = d/ds;
(ii) v(s) satisfies near ∞ the equation

v̈ + av̇ − bv + b(v̇ + v)1−αvβ + bδ(s)(v̇ + v)1−αvβ = 0, (16)

where

a = 2− 1

k
6= 0, b =

1− k

k
> 0, and δ(s) = ε(t).

Proof. We will prove only (i), because (ii) can be proved by direct computations.
We assume that u, u′ > 0. Since u = u0v, the boundedness of v follows from Lemma 9.
Noting du/dt = Ĉktk−1(v + v̇), we have v + v̇ > 0. On the other hand, since dt/ds = t/k,
we have

|v̇| =
∣∣∣∣
d

dt

(
u

u0

)
dt

ds

∣∣∣∣ =

∣∣∣∣
u′u0 − u′0u

u2
0

∣∣∣∣
t

k
≤ C

tk−1tkt

t2k
= O(1) as s →∞.

This completes the proof.

Lemma 11 Let the assumption either of Theorem 2 or Theorem 3 holds, and v be as in
Lemma 10. Then v̇ ∈ L2[s0,∞) for sufficiently large s0.

Proof. We note that conditions (4) and (5), respectively, are equivalent to

∫ ∞
δ(s)2ds < ∞ (17)

and ∫ ∞
|δ̇(s)|ds < ∞. (18)

We firstly consider the case where assumptions of Theorem 2 hold. In this case, the
constant a appearing in (16) is positive.

We multiply the both sides of (16) by v̇. Since α ≤ 1, we have (1+ δ(s))(v̇ + v)1−αv̇ ≥
(1 + δ(s))v1−αv̇; and so we obtain

v̈v̇ + av̇2 − bvv̇ + bv1−α+β v̇ + bδ(s)v1−α+β v̇ ≤ 0. (19)

An integration gives

v̇2

2
+ a

∫ s

s0

v̇2dr − b

2
v2 +

bv2−α+β

2− α + β
+ b

∫ s

s0

δ(r)v1−α+β v̇dr ≤ const; (20)
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that is

a

∫ s

s0

v̇2dr + b

∫ s

s0

δ(r)v1−α+β v̇dr ≤ O(1) as s →∞.

Here we have employed (i) of Lemma 10. Let the integral condition (4) hold; that is, let
(17) hold. By the Schwarz inequality we have

a

∫ s

s0

v̇2dr − C1

(∫ ∞

s0

δ(r)2dr

)1/2 (∫ s

s0

v̇2dr

)1/2

≤ O(1)

for some constant C1 > 0. Therefore v̇ ∈ L2[s0,∞). Next let (5) hold. Using integral by
parts, we obtain from (20)

v̇2

2
+ a

∫ s

s0

v̇2dr − b

2
v2 +

b[1 + δ(r)]v2−α+β

2− α + β
− b

2− α + β

∫ s

s0

δ̇(r)v2−α+βdr ≤ const.

Noting (i) of Lemma 10, we find that v̇ ∈ L2[s0,∞).
Secondly we consider the case where assumptions of Theorem 3 hold. As above, we

multiply the both sides of (16) by v̇. Since α ≥ 1, we have (1 + δ(s))(v + v̇)1−αv̇ ≤
(1 + δ(s))v1−αv̇, and so we obtain

|a|v̇2 ≤ v̇v̈ + bvv̇ + b(1 + δ(s))v1−α+β v̇.

An integration on the interval [s0, s] gives

|a|
∫ s

s0

v̇2dr ≤ v̇2

2
+

bv2

2
+

bv2−α+β

2− α + β
+

∫ s

s0

δ(r)v1−α+β v̇dr + const.

As before, we will obtain v̇ ∈ L2[s0,∞). This completes the proof.

Proof of Theorem 2. To this end it suffices to show that lims→∞ v(s) = 1, where
v(s) is the function introduced in Lemma 10. The proof is divided into three steps.

Step 1. We claim that lim infs→∞ v(s) > 0; namely lim inft→∞ u(t)/u0(t) > 0. The
proof is done by contradiction. Suppose to the contrary that lim infs→∞ v(s) = 0. Firstly,
we suppose that v(s) decrease to 0 as s →∞. This means that u(t)/u0(t) decreases to 0
as t →∞. Accordingly we have

u′(t)α =

∫ ∞

t

p(r)u(r)βdr =

∫ ∞

t

p(r)u0(r)
β

(
u(r)

u0(r)

)β

dr

≤
(

u(t)

u0(t)

)β ∫ ∞

t

p(r)u0(r)
βdr = C1t

1−σu(t)β,

where C1 > 0 is a constant. Consequently we obtain the differential inequality u′ ≤
C2t

(1−σ)/αuβ/αfor some constant C2 > 0 near ∞. But this differential inequality implies
that u(t)/u0(t) ≡ v(s) ≥ C3 > 0 for some constant C3 > 0. This is an obvious con-
tradiction. Next suppose that lim infs→∞ v(s) = 0 and v̇(s) changes the sign in any
neighborhood of ∞. We notice that, if v̇ = 0 in the region 0 < v < [1+ δ(s)]−1/(β−α), then
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v̈ > 0; while if v̇ = 0 in the region v > [1 + δ(s)]−1/(β−α), then v̈ < 0. Therefore in this
case the curve v = v(s) must cross the curve v = [1 + δ(s)]−1/(β−α) infinitely many times
as s →∞. Therefore, we can find out two sequences {ξn} and {ηn} satisfying

ξn < ηn < ξn+1, n = 1, 2, · · · ; lim
n→∞

ξn = lim
n→∞

ηn = ∞

and
v(ηn) → 0 as n →∞, v(ξn) = [1 + δ(ξn)]

−1
β−α → 1 as n →∞.

An integration of (19) on [ξn, ηn] yields

1

2
{v̇(ηn)2 − v̇(ξn)2}+ a

∫ ηn

ξn

v̇2dr − b

2
{v(ηn)2 − v(ξn)2}

+
b

2− α + β
{v(ηn)2−α+β − v(ξn)2−α+β}+ b

∫ ηn

ξn

δ(r)v1−α+β v̇dr ≤ 0. (21)

From equation (16) and (i) of Lemma 10 we know that v̈ = O(1) as s → ∞. This fact
and the fact that v̇ ∈ L2[s0,∞) imply that lims→∞ v̇(s) = 0 by Lemma 4. Accordingly
(21) is equivalent to

o(1) + o(1)− b

2
(o(1)− 1) +

b

2− α + β
(o(1)− 1) + o(1) ≤ 0 as s →∞.

Letting n →∞, we get b/2− b/(2−α + β) ≤ 0 a contradiction to the assumption β > α.
Therefore, lim infs→∞ v(s) > 0.

Step 2. We claim that there is a limit lims→∞ v(s) ∈ (0,∞). To see this, we integrate
(16) multiplied by v̇:

v̇2

2
+ a

∫ s

s0

v̇2dr − b

2
v2 + b

∫ s

s0

(v̇ + v)1−αvβ v̇dr

+b

∫ s

s0

δ(r)(v̇ + v)1−αvβ v̇dr = const. (22)

Suppose that condition (4); namely (17) holds. Since v̇ ∈ L2[s0,∞), the first, and the
third integrals in the left hand side of (22) converge as s →∞. The mean value theorem
shows that

(v + v̇)1−α =

(
1 +

v̇

v

)1−α

v1−α = v1−α + (1− α) (v + θ(r)v̇)−α v̇, (23)

where θ(r) is a quantity satisfying 0 < θ(r) < 1. Therefore,

∫ s

s0

(v̇ + v)1−αvβ v̇dr =

∫ s

s0

{v1−α+β v̇ + (1− α)(v + θ(r)v̇)−αvβ v̇2}dr

=
v(s)2+β−α

2 + β − α
+

∫ s

s0

O(1)v̇2dr + const.
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So we find that the function −v2/2 + v2+β−α/(2 + β − α) has a finite limit. This fact
shows that lims→∞ v(s) = m ∈ (0,∞) exists. Suppose that (5); namely (18) holds. We
have by (23)

∫ s

s0

δ(r)(v̇ + v)1−αvβ v̇dr =

∫ s

s0

{δ(r)v1−α+β v̇ + δ(r)(1− α)(v + θ(r)v̇)−αvβ v̇2}dr

=
δ(s)v2+β−α

2 + β − α
− 1

2 + β − α

∫ s

s0

δ̇(r)v2+β−αdr + const +

∫ s

s0

O(1)v̇2dr

as s →∞. Hence, as before we know that the function −v2/2 + v2+β−α/(2 + β − α) has
a finite limit. Therefore m = lims→∞ v(s) ∈ (0,∞) exists.

Step 3. Finally, we let s → ∞ in equation (16). Then, we have lims→∞ v̈(s) =
b(m − m1+β−α). Since v̇ = o(1), we must have lims→∞ v̈(s) = 0, implying m = 1. The
proof of Theorem 2 is completed.

Proof of Theorem 3. As in the proof of Theorem 2, firstly we show that
lim infs→∞ v(s) > 0. The proof is done by contradiction. Suppose to the contrary that
lim infs→∞ v(s) = 0. We may assume that v̇ changes the sign in any neighborhood of ∞.
Since v(s) takes local maxima in the region v ≥ (1+ δ(s))−1/(β−α), there are the following
sequences {sn} and {sn} satisfying

sn < sn < sn+1, lim
n→∞

sn = lim
n→∞

sn = ∞

and
v̇(sn) = v̇(sn) = 0, lim

n→∞
v(sn) = 0, v(sn) ≥ (1 + δ(sn))−1/(β−α).

Now, we decompose α in the form α = m−ρ, where m ∈ N and ρ > 0. Although there
are infinitely many such choices of decomposition for α, we fix one choice for a moment.
We rewrite equation (16) as

v̈ − |a|v̇ − bv + b(v̇ + v)−m+1+ρvβ + bδ(s)(v̇ + v)−m+1+ρvβ = 0.

We multiply the both sides by (v + v̇)mv̇ and then integrate the resulting equation on the
interval [sn, sn] to obtain

∫ sn

sn

v̈v̇(v + v̇)mdr − |a|
∫ sn

sn

(v + v̇)mv̇2dr − b

∫ sn

sn

vv̇(v + v̇)mdr

+b

∫ sn

sn

(v + v̇)1+ρv̇vβdr + b

∫ sn

sn

δ(r)(v + v̇)1+ρv̇vβdr = 0. (24)

The binomial expansion implies that

m∑

k=0

ck

∫ sn

sn

v̈v̇k+1vm−kdr − |a|
∫ sn

sn

(v + v̇)mv̇2dr − b

m∑

k=0

ck

∫ sn

sn

vm−k+1v̇k+1dr

+b

∫ sn

sn

(v + v̇)1+ρv̇vβdr + b

∫ sn

sn

δ(r)(v + v̇)1+ρv̇vβdr = 0,

11



where ck =
(

m
k

)
are the binomial coefficients. Now, we evaluate each term in the left hand

side. For k ∈ {0, 1, ..., m− 1} we obtain

∫ sn

sn

v̈v̇k+1vm−kdr =

∫ sn

sn

d

dr

(
v̇k+2

k + 2

)
vm−kdr

= −m− k

k + 2

∫ sn

sn

v̇k+3vm−k−1dr = o(1) as n →∞.

For k = m obviously we have
∫ sn

sn
v̈v̇k+1dr = 0. Hence the first term of the left hand side

of (24) tends to 0 as n →∞. The second term is dominated by Const
∫ sn

sn
v̇2dr, and hence

it tends to zero as n → ∞. Next, we compute the third term. For k ∈ {1, 2, ..., m} we

have | ∫ sn

sn
vm−k+1v̇k+1dr| ≤ const

∫ sn

sn
v̇2dr. For k = 0 we have

∫ sn

sn

vm+1v̇dr =
1

m + 2

(
v(sn)m+2 − v(sn)m+2

)
=

v(sn)m+2

m + 2
+ o(1) as n →∞.

Therefore the third term is equal to

o(1)− bv(sn)m+2

m + 2
as n →∞.

To evaluate the fourth term we employ the mean value theorem to obtain

(v + v̇)1+ρ = v1+ρ + (1 + ρ) (v + θ(r)v̇)ρ v̇,

where θ(r) is a quantity between 0 and 1. Hence we can compute

∫ sn

sn

(v + v̇)1+ρv̇vβdr =

∫ sn

sn

v1+ρ+β v̇dr + (1 + ρ)

∫ sn

sn

(v + θ(r)v̇)ρ v̇2vβdr

=
v(sn)2+ρ+β − v(sn)2+ρ+β

2 + ρ + β
+ (1 + ρ)

∫ sn

sn

O(1)v̇2dr =
v(sn)2+ρ+β

2 + ρ + β
+ o(1) as n →∞.

Finally by Schwarz’s inequality we find that the last term is dominated by the quantity

const

(∫ sn

sn

δ(r)2dr

)1/2 (∫ sn

sn

v̇2dr

)1/2

= o(1) as n →∞.

Consequently, from (24) we obtain the formula

o(1)− b

m + 2
v(sn)m+2 +

b

2 + ρ + β
v(sn)2+ρ+β + o(1) = 0 as n →∞.

This implies that limn→∞ v(sn) = [(m + 2 + β − α)/(m + 2)]1/β. Since m can be moved
arbitrarily, this is an obvious contradiction. Therefore lim infs→∞ v > 0.

We are now in a position to show lims→∞ v(s) = 1. Since lim infs→∞ v(s) > 0, we find
that lim inft→∞ u(t)/u0(t) > 0. Integrating equation (7) (with q replaced by p), we further

12



find that lim inft→∞ u′(t)/u′0(t) > 0. Since v + v̇ = u′(t)/u′0(t), we obtain lim infs→∞(v +
v̇) > 0. Recalling equation (16), we find that v̈(s) = O(1) as s → ∞. Since we have
already known that v̇ ∈ L2[s0,∞), Lemma 4 shows that lims→∞ v̇ = 0. Concequently, as
in the proof of Theorem 2 we can prove that lims→∞ v(s) = 1. This completes the proof
of Theorem 3.
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