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Abstract

A Poisson structure on a Lie group is called left invariant if the contravari-
ant 2-tensor field 7 corresponding to the Poisson structure is left invariant.
Explicit examples of such structures were known only for few cases, and in
this paper, we give new examples of high rank left invariant Poisson struc-
tures for all non-compact classical real simple Lie groups. This result is
equivalent to give constant solutions of the classical Yang-Baxter equation
[r12, 713 + [r12, 723 + [r'3, 72%] = 0 taking values in the space A?g for these
Lie groups.

Introduction

The main purpose of this paper is to give new examples of high rank left invariant
Poisson structures on non-compact classical real simple Lie groups.

To state our results, we first explain some fundamental notions which we use
in this paper. Let M be a differentiable manifold, and let C*° (M) be the set
of C*°-functions on M. A Poisson structure on M is a skew-symmetric bilinear
map {, } : C®°(M) x C*®(M) — C*°(M) satisfying the following conditions:

Jacobi rule : {{f,g},h}+ {{g9,h}, [} +{{h, f}, 9} =0,

Leibniz rule : {f,gh} = {f,9}h + g{f, h}

(f, g, h € C°(M)). The Poisson structure { , } defines a contravariant 2-tensor
field m € T(A’TM) on M by
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(m,df Ndg) = {f, 9},
where { , ) is the natural pairing. Conversely, a 2-tensor field 7 € T'(A2T M)
defines a bracket operation { , } by the above equality, and this { , } gives a

Poisson structure on M if and only if 7 satisfies the equality [7,7]s = 0, where
[,]s: T(A’TM) x T(A2°TM) — T(A3T M) is the Schouten bracket defined by

[XAY, ZAW]s = [X, ZINY AW+ X ALY, ZIANW —[ X, WIANYAZ-XA[Y,W]AZ.

In this sense, we may say that = defines a Poisson structure on M if it satis-
fies [r,7]s = 0. (For general definition of the Schouten bracket and detailed
explanation of Poisson manifolds, see [24] etc.)

Now, in this paper, we mainly consider the case M is a Lie group G. In
this case, we say that a Poisson structure on G is left invariant if 7 is a left
invariant 2-tensor field, i.e., 7 belongs to the space A%2g where g is the Lie algebra
of G, consisting of left invariant vector fields. In this situation, the equation
[7,7]s = 0 is called the “classical Yang-Baxter equation”, which we abbreviate
the CYB-equation (cf. [24; p.173]). Clearly, from the above fact, the solution of
the CYB-equation naturally corresponds to the left invariant Poisson structures
on (G, and finding solutions of this equation is the main subject of this paper.

Historically, the CYB-equation was first introduced by E. K. Sklyanin as the
classical limit of the quantum YB-equation around in the 1980s, and reformulated
in the form of the Schouten bracket by Gel'fand and Dorfman. Later, in the
paper [2], Belavin and Drinfel’d classified the meromorphic solutions of the CYB-

equation of the form

(X712 (), X2 (u +0)] + [X 2 (u), X (0)] + [X*(u +v), X (v)] =0

under some generic assumption, where the function X (u) takes value in the tensor
product g ® g of a complex simple Lie algebra. (For the meaning of the above
equation, see for example [2], [3].) The meromorphic solutions are extended to
the whole complex plane and divided into three classes according as the rank
of the lattice I’ consisting of the poles of X (u). They completely classified the
solutions in the cases rank I' = 2 and 1. But in the remaining case rank I' = 0,
the classification was not done, and they only showed that X (u) is equivalent to

a rational function, and constructed some special examples. The problem we are
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considering now is just contained in this rank I' = 0 case. Precisely, the solution
of the CYB-equation in our sense coincides with the “constant” solution of the

above equation
[,,,12’7,13] + [’I‘lz,’f‘23] + [,,,13’,,.23] =0

where r takes value in the subspace A%2g C g®g, and g is a real simple Lie algebra.
(In their terminology, the triangle equations for constants. See [3; p.96] and § 7
(4).) For this constant case, they gave examples of solutions for g = sl(n, C) at
the end of [2], but until now, solutions for other Lie algebras were not studied so
well, as we will explain below.

In general, the CYB-equation [7,7]s = 0 admits several types of degenerate
solutions including the trivial solution 7 = 0 which corresponds to the Poisson
structure defined by {f,g} = 0. The simplest non-trivial example is the case of
solutions with rank 7 = 2, where rank 7 means the usual rank of a skew symmet-
ric tensor of A%g. And in this case, there is a natural one-to-one correspondence
between the set of solutions with rank 7 = 2 and the set of 2-dimensional sub-
algebras of g (cf. Proposition 2). Hence, the complete classification of solutions
of the CYB-equation including degenerate ones is almost “hopeless”, as Belavin
and Drinfel’d wrote in [2; p.179]. Under these circumstances, as a first important
problem, it is necessary to find generic (= high rank) solutions of the CYB-
equation, and if possible, to classify such high rank solutions under the action of
the adjoint groups.

Concerning this problem, we already know all solutions of the CYB-equation
essentially for compact Lie groups (cf. Proposition 4), and from this result, it
follows that the rank of generic solutions 7 (= max rank ) is equal to 2[1/2 - rank
G]. But for non-compact Lie groups, such upper bound is not known yet in
general, and it is the main purpose of this paper to present high rank solutions
of the CYB-equation for all non-compact classical real simple Lie groups. As a
by-product of this result, we can also construct a new class of Poisson-Lie group
structures on G (cf. § 7 (1)). Until now, such high rank examples of left invariant
Poisson structures were known only for the groups SL(n,R), SL(n, C) and other
some low dimensional (real or complex) Lie groups (cf. [2], [3], [6], [17], [19], [20],
[21], [23], [25]). Our main results are summarized in the following theorem.

Theorem 1: Non-compact classical real simple Lie groups possess a left invari-

ant Poisson structure m with the following rank :
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SL(n,R) : rank 7T =n(n —1),
SU*(2n) (n >2) : rank 7w =4n(n — 1),
Sp(n,R) : rank7m =n(n+1),
SO*(2n) (n > 2,n # 4): rank7® =n(n — 1),
' [ 2pq (r=¢q,q+1,q+2)
SUGa) rakn={ 3 e ey ’
SO(p,q) (p>q>1): ranknw =
pg+2[(p —q)/4] (g = even)
(p+1)(g—1)+2[Bp—3¢—1)/4]+c (p>g+1, p=even, g =odd),
(p+1)(g—1)+2Bp—q/4+c (p > q, p=odd, ¢ = odd)
where

2 p=q+1,q9q+2,q+4,q+5
c= 4 p=q=3 )

0 otherwise

2°+2p (=49
Sp(p,q) (p > g >1) :rankm =14 2pg+p (p =even >q) ,
2pg+p—1 (p=odd>q)

SL(n,C)® : rank 7 = 2n(n — 1),
O@2n+1,C)R : rank 7 = 2n(n + 1),
Sp(n,C)R : rank 7 = 2n(n + 1),
2n? (n = even)
O(2n,C)R : rankm =< 2(n®—-1) (n=odd, n#3) ,
24 (n=23)

where G® means the complex Lie group G itself, but considered as a real Lie

group.

(The explicit form of each Poisson structure is stated in the proof of Theorem 1
given in § 2 ~ § 6.) We can also show that among these solutions, the following
cases give the highest rank solutions of the CYB-equation:

SL(n,R) : max rank 7 = n(n — 1),
SU(2,1) : max rank 7 = 4,
S0(3,1) ~ SL(2,C)® : max rank 7 = 4,
S0(4,1) ~ Sp(1,1) : max rank 7 = 4,
S0(3,2) ~ Sp(2,R) : max rank 7 = 6,
SO(5,1) ~ SU*(4) : max rank 7 = 8.

(The symbol ~ means the local isomorphism of Lie groups.) We show this fact by

classifying high (even) dimensional subalgebras of each g, and check that whether
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they admit a left invariant symplectic structure or not (cf. Proposition 2). For
the remaining non-compact Lie groups, we do not know whether the values in
Theorem 1 give the actual maximum of rank 7 or not at present. (See § 7 (2),
(3) and (5).)

Now, we explain the contents of this paper briefly. After reformulating our
problem to the dual “symplectic” form in § 1, we give a proof of Theorem 1
in § 2 ~ § 6. We prove this theorem by case by case construction because the
construction depends heavily on the property of each Lie group. For example,
among three Grassmann type Lie groups, SU(p, q) and SO(p, q) are essentially
related to the structure of graded Lie algebras of the second kind, though Sp(p, q)
is not. To construct such structures, not a little calculations on matrices are
required for most cases. In the final section (§ 7), we give some results and
comments related to left invariant Poisson structures, such as Poisson-Lie groups,
the classification of solutions for SL(n,R), algebraic sets defined by the CYB-
equation, etc.

§ 1. Left invariant Poisson structures

In this section, we first review some known facts on left-invariant Poisson struc-
tures on GG, which we use in this paper. To construct a high rank solution of
[w,7]s = 0, we reformulate this equation to the following dual form.

Proposition 2 (cf. [2; p.179], [7; p.7], [16]) : There is a one-to-one corre-
spondence between the set of solutions of the classical Yang-Bazter equation
[r,7]s = 0 and the set of pairs (g',w) where g' is an even dimensional subal-
gebra of g and w is a left invariant symplectic form on ¢'. In addition, under

this correspondence, we have rank 7 = dim ¢'.

(Here, a left invariant symplectic form on g’ actually implies a left invariant
symplectic form on a Lie group whose Lie algebra is g¢'.)
The correspondence is given as follows (see [7; p.7]): Let 7 be a solution of

[m,7]s = 0 with rank 7 = 2k, and we express it as

T=X1i A1+ -+ X ANYL.
Then, from the condition [7,7]s = 0, we know that g’ = (X1, -+ , X, Y1, -, Y%)

is a 2k-dimensional subalgebra of g, corresponding to 7. We define a linear map
7:g* — g by



6 Y. Agaoka

(t(a),B) =m(, B), a, Beg.

Then, the symplectic form w on g’ and m € A%g are related by

w(X,Y) =xn(#r"1(X),7#71(Y)), X,Y egd,

(e, B) = w((@*(a)#, (i*(8))*), a, B € g%,
where i*: g* — g'* is the dual map of the inclusion i: g’ = g, and #: g* — ¢
is the map defined by w(a#,X) = a(X) for a € g™, X € g¢'. It should be
remarked that from this proposition, we know that the value “max rank n” is
just equal to the maximum dimensional subalgebra of g admitting a left invariant
symplectic structure.

Two dimensional Lie algebras always admit a left invariant symplectic struc-
ture, and hence from the above proposition, there is a natural one-to-one cor-
respondence between the set of two-dimensional subalgebras of g and the set of
solutions of the CYB-equation with rank 7 = 2. Of course, this fact also can be
verified directly by considering the equality [X AY, X AY]s = 2XAYA[X,Y] = 0.

In a sense, a Poisson structure is a generalization of symplectic structures.
In our situation, left invariant Poisson structure is of constant rank everywhere,
and hence it defines a left invariant foliation on G whose leaves are all symplec-
tic manifolds (cf. [21], [24]). The above proposition may be considered as a
reformulation of this fact.

Concerning left invariant symplectic structures on Lie groups, the following
results are already proved by B. Y. Chu.

Proposition 3 (cf. [9]): (1) A left invariant symplectic structure does not exist
on semi-simple Lie groups.

(2) Assume there exists a left invariant symplectic structure on a compact Lie
group G. Then, G is abelian.

(3) Assume there exists a left invariant symplectic structure on a unimodular

Lie group G. Then, G is solvable.

In particular, from Proposition 2 and Proposition 3 (1), we know that max rank
7 < dim G for semi-simple Lie groups.

Concerning the solution of the CYB-equation on compact Lie groups, the fol-
lowing result is known. From this proposition, we may say that we essentially

know all solutions of the CYB-equation for compact cases.
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Proposition 4 (cf. [7; p.12]): Assume G is compact, and let ™ be a solution
of [r,m]s = 0 on G. Then, ® belongs to a space A’a, where a is an abelian
subalgebra of g. In particular, we have max rank m = 2[1/2-rank G] for compact

G.

From this result, we immediately know that the solution of [, 7]s = 0 for the
group SO(3) (or SU(2)) must be trivial, i.e., 7 = 0 because rank G = 1. (See
also [21].)

§ 2. The case of SU(p,q)

In the following, we give a proof of Theorem 1 by case by case construction of
desired dimensional subalgebras g’ and symplectic forms w on g’ (cf. Proposition
2). As for the Lie group SL(n,R), Belavin and Drinfel’d [2; p.180] already
constructed a solution with rank 7 = n(n — 1) (cf. § 7 (2)), and hence we treat
the remaining non-compact classical real simple Lie groups. In this section, we
first consider the case SU(p,q) (p > g > 1).

Proposition 5: There exists a left invariant Poisson structure w on the Lie
group SU(p,q) (p > ¢ > 1) with

rankw:{%q (P=q,q¢+1,q+2)
2pg+2((p—q-1)/2] (P=q+3)

Proof: We explicitly construct a desired dimensional subalgebra g’ of g = su(p, ¢)
and a symplectic form on g'. Before defining a subalgebra g’, we first prepare
some notations. We denote by M (p, g; K) the set of matrices of size (p, q) taking
values in the field K. For A € M(q,q;C), we define a new matrix [A] of the

same size by

a;; (i <}j)
[A]i; = 0 (i=1y),
—ai; (i >j)

where a;; is the (i, j)-component of A, and put
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E= o € M(q,q;R).

Note that [A] is skew-Hermitian if A is Hermitian. For X € M(q,q;C), the
matrix X F is uniquely expressed as a sum XE = A + B, where A = A and
‘B + B = 0. In this situation, we define two matrices X(*) and X(® by

XM =[4]- B and X® = E([A] + B)E.

Then, we have the following lemma.

Lemma 6 : Assume X,Y € M(q,¢;C) and P, Q € M(p— q,q;C).
(1) XO, X® € u(qg) and T XV + Tr X = 0.
(2) X® =EXWE + EX - 'XE.
(3) For Z = (*PQ — *QP)E, we have

zW =tQgp -tPQ, z® = E(PQ - 'QP)E.
(4) For Z =XMWY — YO X 4+ XY® — Y X we have

ZW =[xV yW] 4+ XY - V!X,
Z® = [X@ Y@+ XY -V X.

Proof: The properties (1) and (2) follow immediately from the definition, and
the property (3) follows from the fact *PQ — QP € u(q). Now, we prove (4). We
express the matrix YE asasum YE =C + D (!C = Cand*D + D = 0). Then,

we have the decomposition

(XVY —vWX + XY® - YXO)E
= ([A]C - [C]A + 4[C] - C[4])
+ ([A]D - D[A] + AD + DA + B[C] - [C]B — BC — CB).

In the last expression, the first term is Hermitian and the second term is skew-

Hermitian, and hence we have
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ZW = [[A]C - [C]A + A[C] - C[A]]
—[A]D + D[A] — AD — DA — B[C] + [C]B + BC + CB.

On the other hand, we can easily prove the equality

aii O C11 O
[[A]C + A[C]] + = [A][C] + AC,
0 aqq 0 Cqq
where a;; (resp. ¢;;) is the (i, j)-component of A (resp. C). In fact, the (3, j)-
components of both sides are equal to

iiCij + 23 i ey QikCrj + aijcj; (1 <),
a3 Ci (i=3
Qi;Cjj +2Zj<k<z’ QAikCkj + A4;Cij (Z >

By using this equality, we have

?

~— —

zW = [A][C] - [C][A] + AC - CA
—[A]D+ D[A] - AD - DA - B[C] + [C]B + BC + CB,
which is equal to [XM), Y (V] + XY — Y*X. The second equality of (4) can be
proved directly from (2) and the first one. [ |

Now, we define a subalgebra g’ of su(p,q) as follows. We express an element

of su(p, ¢) in the block form

X -ty tp q
Y Z 'Q ),,_q X, Weu(q), Zeup-q),
( P Q@ W/ q

q pP—q q

where Tr X + Tr Z + Tr W = 0. We put

xM o0 X
g1 = 0 0 0 X € M(q,q;C) ¢,
tX 0 X®@

0o P 0
g2 = -P 0 PE ||PeM(p—q,qC)y,

0 E'P 0
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and let g3 be a 2[(p — ¢ — 1)/2]-dimensional subalgebra of the space

0 0 0 ari 0
ar € R
810{81(: 0 ai’TI;Kzo
P—q
(In the case p < ¢+ 2, we put g3 = {0}.) Using Lemma 6, we can easily check
that g’ = g1 @ g @ g3 is a subalgebra of su(p, ¢), satisfying the following bracket

table :

[ ) ] | g1 g2 93
g |91 g2 O
g2 g1 @2
g3 0

For example, the properties [g1,91] C g1, [g1,92] C g2, [g2,92] C g1 follow from
(4), (2), (3) in Lemma 6, respectively. The dimensions of g1, g2 are equal to 2¢>
and 2¢q(p — q), and hence, g’ is the desired dimensional subalgebra.

Finally, we define a symplectic form w on g’ as follows. First, we define a € g'*
by

x® tp X
a -P K PE =i -Tr(XE - E'X)/2 € R.
tX E'P X®
Then, we can prove that the exact 2-form —da is non-degenerate on the subspace

g1 D@ g2, and —da(gs, g') = 0. For example, by expressing the matrix

x®M o0 X
0 0 O €
tX 0 X®@

simply as X etc, we have —da(X,Y) = a([X,Y]) =i - Tr (ZE — EtZ)/2, where
Z=XWYy-YyWX4+XY?_YX®, Since (ZE—FE'Z)/2 is the skew-Hermitian
part of ZE, the value a([X,Y]) is equal to

i-Tr([A]D — D[A]+ AD + DA + B[C] - [C|B — BC — CB),
where XE = A+ B, YE=C+D (A= A4'C=C,'B+B='D+D =0.
Remind the proof of Lemma 6 (4).) Then, we immediately know that this is equal
to 2i - Tr (AD — BC), and the non-degeneracy of —da on g; follows from this

expression. The non-degeneracy of —da on g and the properties —da(g1, g2) =
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—da(gs,g') = 0 can be proved easily. Next, we fix a symplectic form w' on the
abelian subalgebra gz. By using the decomposition g’ = g1 ® g2 ® g3, we can
naturally extend w’ to the 2-form on g¢', which is also closed on account of the
property [¢, ¢'] C g1 @ go. Then, by putting w = —da +w', we obtain the desired
symplectic form on g'. [ |

Remark: The above construction is essentially related to the graded Lie alge-
bra of the second kind. The Lie algebra su(p, q) possesses a graded Lie algebra
structure su(p,q) = [_o @ - - - @ Iy satisfying dim [1» = 1. (For the explicit decom-
position, see [8], [14].) We denote by E the element of [y giving the gradation,
ie, [, ={X € su(p,q) | [E,X] = pX} for p= -2 ~ 2. Then the 2(p + ¢ — 1)-
dimensional subalgebra (E) @ I; @ l; admits a left invariant symplectic form w
defined by w(X,Y) = lx-component of [X,Y]. And we can easily check that
this subalgebra has a trivial intersection with the subalgebra su(p — 1,4 — 1)
obtained by deleting the outer layer of su(p,q). Next, we once again construct
a similar subalgebra starting from su(p — 1,¢q — 1), and repeat this procedure
for g times. Then, collecting these subalgebras and symplectic forms, we finally
obtain the subalgebra g1 ® g2 and the left invariant symplectic form —da on it
constructed in the above proof. The final subalgebra g’ is obtained by adding
the abelian Lie algebra gs which is contained in the remaining core compact
subalgebra su(p — ¢,0) = su(p — q) C su(p,q).

§ 3. The case of SO(p,q)

In the case of G = SO(p,q) (p > g > 1), there exists a Poisson structure with
rank 7 = pg+ (p— q)/2. The construction is almost the same as SU(p, ¢). But, it
is a little more complicated and we must divide the construction into several cases

according as the parity of p and ¢q. Precisely, we have the following proposition.

Proposition 7 : There ezists a left invariant Poisson structure m on the Lie
group SO(p,q) (p > ¢ > 1) with

rank 7w =
pq +2[(p — q)/4] (q = even),
(p+1)(g—1)+2[Bp—3¢—1)/4+c (p>g+1, p=even, q=odd),
(p+1)(@-1)+2B(p-q9/4 +c (p > q, p=odd, q = odd),

where
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2 p=q+1,9+2,9+4,q+5,
c=4q 4 p=q=3
0 otherwise.

Proof: We construct a subalgebra g’ of o(p,q) with the desired dimension by

dividing roughly into two cases according as the parity of q.

(i) The case ¢ = even.
We put ¢ = 2r. In this case, we can construct a subalgebra g’ almost in the same

way as g = su(p, q). First, as in § 2, we put

aij (’L <j)
Ml =4 0 (=3
—ai; (1> )

for A € M(q,¢;R). In this case, [A4] is skew-symmetric if A is symmetric. In
addition, we put

L 0
I,

For X € M(2r,2r;R), the matrix XFE is uniquely expressed as a sum XE =
A+ B, where A = A and *B + B = 0. In this situation, we put
XM =[4]-B and X® = E(A]+ B)E

as before. Then, we have the following lemma. This lemma can be proved in the

same way as Lemma 6, and we omit the proof.

Lemma 8 : Assume X,Y € M(2r,2r;R) and P, Q € M(p — 2r,2r;R).
(1) XD, X € o(2r).
(2) X® =EXME+ EX —tXE.
(3) For Z = (*PQ —*QP)E, we have

zMW =tQP -'PQ, z¥ = E('PQ -'QP)E.

(4) For Z=XWY —YWX + XY® — Y X®) | we have
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ZW = [x® yO] 4 Xty —vtX,
Z® = [x® y?) 41Xy — 'Y X.

Now, under these preliminaries, we put

xX® o0 X q

g1 = 0 0 O p—q | X € M(q,q;R) ¢,
tx 0 Xx® q
q bp—q q

0 tp 0 q

g2 = -P 0 PE P—q PGM(p—q,q,R) )
0 EP 0 q
q9 p—q q

and let g3 be a 2[(p — ¢)/4]-dimensional abelian subalgebra of the space

Then, by using the properties in Lemma 8, we can easily show that the bracket
satisfies the following table:

[l g g
g1 |61 g2 O
g2 g1 92
93 0

Hence, by putting g’ = g1 ® g2 @ g3, ¢' is a subalgebra of o(p, ¢) with the desired
dimension.

Next, we define a left invariant symplectic form on g’. For this purpose, we
first define the element a € g'* by

x® tp X
afl| -P K PE || =2l +al)+ - +al) .,
tx EP X®
where mS) is the (i,j)-component of X(Y) € M(2r,2r;R). Then, —da is non-
degenerate on the subspace g1 @ g2, and —da(gs,g’) = 0. For example, by

expressing the matrix
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x®M o X
0 0 0 € g
tX 0 X®@

simply as X etc, we have —da(X,Y) = o([X,Y]) = zg) +- zé?—lﬂr? where
zz(]l) is the (i, 5)-component of Z() = [X() Y(D] 4 XY — Y*X. We express the
matrices X and Y in terms of (2,2)-blocks as follows:

X - Xup Yiu - Y,
, Y = ,
Xrl o er Yvrl e Yrr
where X;;, Yi; € M(2,2;R). Then, the matrix X®@ can be expressed in the
following block form :

X =

) grti—i (6< )
Xz] = Xz,r—i—l—z' (l = .7);
Xi,r-i—l—] > .7)
where we put PO = ( © € ) for the matrix P= ( ¢ ° ). Using this expres-
— 0 d

sion, we can show that zg) + -+ zé?_l,% is equal to the (1,2)-component of

the (2,2)-matrix

S xPVY VX + Xyt - Vit XG)
4,
= Z (X3;'Yiy — V' Xij) — Z ("X Yi; — 'Y Xij),
i+i<r+1 r+2<itj

and the non-degeneracy of —da on g; follows immediately from this formula.
Other properties on —da can be proved in the same way. Next, let w’ be a left
invariant symplectic form on gz. We can naturally extend «' to the form on g’
by using the decomposition g’ = g1 @ g2 @ gs. Then, since [g',g'] C g1 ® go2, we

!

can easily check that w' is also closed on g’. Hence, by putting w = —da + &',

we obtain the desired symplectic form on g'.

(ii) The case ¢ = odd.
In this case, we first prove the following lemma, corresponding to the case ¢ =1
in Proposition 7. We later use this lemma in the proof of Proposition 7 for general

cases ¢ = odd > 3.
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Lemma 9 : There exists a left invariant Poisson structure w on the Lie group

SO(s,1) (s > 1) with

2[3s/4]—24+c¢ (s =even),

rank T = { 2[3(s —1)/4] + ¢ (s = odd),

where

L2 s=23556
“ 1 0 otherwise.

Proof: The case s = 1 is trivial since 0(1,1) is the 1-dimensional abelian Lie
algebra. In the case s = 2, 0(2,1) is isomorphic to s[(2, R), and we already know
that it admits a left invariant Poisson structure with rank7 = 2 (cf. [2; p.180], §
7 (2)).

Next, we construct a Poisson structure on 0(3,1) with rank7m = 4. (See also
[25; p.22]).) We express E;; the matrix such that the (4, j)-component is 1 and

other components are all zero, and put
X1 =FE3 — B3 + Eoy + Bz, Xo =FE3— E3; + E34 + Ey3,
X3 = Fi4 + Eyy, Xy = Eby3 — E3s.

Then, it is easy to check that g’ = (X1,---,X4) is a 4-dimensional subalgebra of
0(3,1). We define a € g'* by

a(X) = X;-component of X

for X € g'. Then, the exact 2-form w = —da gives the desired symplectic form
on g'.
In the case of s =5, 6, we put
Xi=FE1i—Eqg+Ei ;1 +Est1,, 2<i<5),

Y1 = Fa3 — E33 + Eg5 — Esq, Y2 = FEzq — Egp — F35 + Fs3,
Ys =FEys —Esp+ E3g —Ey3, Yo=FE 41 +FE;11,1.

Then ¢g' = (X5, -+, X5,Y1,---,Yy) is the 8-dimensional subalgebra of o(s,1).
Let a be the element of g'* defined by

a(X) = Xs-component of X

for X € ¢g'. Then, we can directly check that w = —da is the symplectic form on
!

g.
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Next, we consider the remaining general cases s = 4 and s > 7. Remark that
¢ = 0 for these cases. We divide the proof into three types according as the value
of s. We first put

Xi=F;—En+E;o1+ Espa,
Yj = Esjj1 — Eajy1,25,

for 2<i<sand 1 <j <|[(s—1)/2]. Then, the bracket operations of these

matrices are given by

[X2j,Y;] = Xojy1, [Xojr1,Yj]=—Xo;, 1<5<[(s—1)/2],

and other brackets are all zero. In particular, (X;,Y;) is a [3(s—1)/2]-dimensional

subalgebra of o(s,1).

(1) The case s =4k + 1, 4k + 2.
We put g’ = (Xa,--- , Xaky1,Y1, -, Yar). Then, g’ is a 6k-dimensional subal-
gebra of o(s,1). We express a;, 3; € g'* the dual basis of g’ = (X;,Y;). Then,
from the above bracket operations, we have

d042j+1 = —O[zj /\ﬂj, dOéQj = (12j+1 A ﬂj, dﬂj =0

for 1 < j < 2k. Hence, the 2-form

2k k
w = Za2j ANazjrr + 2/821'—1 A Ba;

7j=1 i=1
gives the desired symplectic form on g'.

(2) The case s = 4k — 1.
We put ¢ = (Xo,--+ , Xap—1,Y1, -+, Yop—2). Then ¢’ is a (6k — 4)-dimensional
subalgebra of 0(4k —1,1). We express «;, 3; € g'* the dual basis of (X;,Y;) as
above. Then, we have

dagzjir = —azj A Bj, dasj = azjr1 ABj, dBj =0,
for 1 < j <2k —2, and dayg—o = daysr—1 = 0. Hence, the 2-form

2k—1 k—1

w= z o A azjyr + 252i—1 A Ba;

j=1 =1
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gives the desired symplectic form on g'.

(3) The case s = 4k.
We put ¢’ = (Xo,---, Xug, Y1, - ,Yop—1). Then g’ is a (6k — 2)-dimensional
subalgebra of 0(4k, 1), and by using a dual basis as above, we have

dazji1 = —azj A B, dasj = azjr1 ABj, dB;j =0

for 1 < j <2k —1, and daygy, = 0. Hence, the 2-form

2k—1 k—1
w= Z Qg A o1 + Z Bai—1 A B2i + aur A Pag—1
= i=1
gives the desired symplectic form on g'. [ ]

Next, we give the proof of Proposition 7 for the case ¢ = odd > 3. We put
g=2r+1 (r>1). Using the same notations as in the case of ¢ = even, we put

(/XM 0 0 X a—1
_ 0 0 0 0 |p—g+1 .
gl—% 0 0 0 0 1 XGM(q_laq_LR) )
{ X 0 0 X® ) ¢
g—1p—q+l 1 g¢-1

( 0 tP 0 0 g1

4o = 4 —-P 0 0 PE p—q+1
0 0 0 O 1

L 0 EtP 0 0 g—1

g—1 p—q+1 1 g-1

PeMp-q+1,¢g-1LR)p,

0 tQ 0 qg—1
0 0 0 p—q+1
0 0 -QE 1

N

93 QeM1,q—-1R),,

where F is the matrix defined by
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I

(@)

I
. 10
E = ) € M(2r,2r;R), I2:<0 1),

L 0
I

as before. In addition, we imbed the subalgebra of o(s,1) (s = p—q+ 1)

constructed in Lemma 9 as a subspace of the following space in a natural way :

0 0 0 0 g—1
0 K L 0 |p—g+1 Keop—q+1)
0 'L 0 o0 1 LeM(p—-q+1,1;R)
0 0 0 0 g—1
g—1lp—q+1 1 q-—1

We express this subspace as g4. Then, as in the case of ¢ = even, we can show
that the bracket operations satisfy the following table :

[,]]o1 @ @ 94
g |91 g2 O3 0

g2 g 0 g2+g3
g3 g g2
g4 g4

Hence, g' = g1 @ --- ® g4 is a subalgebra of o(p,q). In addition, the dimension
of g’ is equal to the one given in Proposition 7 except the case (p,q) = (3,3).
Finally, the symplectic form w on g’ can be defined in the same way as in the
case of ¢ = even by adding the symplectic form ' on g4 constructed in Lemma
9 and the exact form —da on g', where a € g'* is defined by

xm tp tg X

—P K L PE _m(1)+‘_.+$(1)

Q tL 0 —QE - Y12 2r—1,2r>
tX E'P E'Q X®

as before. Verification of these facts can be done completely in the same way as
before, and we left it to the readers.

Finally, we construct a symplectic structure on a 12-dimensional subalgebra of
0(3,3) as follows. We put
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;L A B .
{4 LB )reaw ersam)

Then, g’ is a 12-dimensional subalgebra, and we define the element o € g'* by

a(X) = z12 + 215 + Z26,

where z;; is the (i,j)-component of X € g'. Then, it is directly checked that
—da gives a left invariant symplectic structure on g’, and we thus complete the
proof of Proposition 7. |

Remark: The construction of the subalgebra of o(p,q) stated in this proof is
also based on the graded Lie algebra structure o(p,q) = [_2 @ --- ® [ with dim
[1o» = 1, as in the case of su(p,q) (cf. [8], [14]). In the special case 0(3,3), it is
isomorphic to s[(4, R), and we already know that s[(4, R) possesses a left invariant
Poisson structure with rank 7 = 12. For general o(p,p), we can construct the
1/2 - p(3p — 1)-dimensional subalgebra of o(p,p) by changing 3 into p in the
above definition of g' C 0(3,3). The integer 1/2 - p(3p — 1) is even if and only
if p=0or 3 (mod 4), but it seems that this subalgebra does not possess a left
invariant symplectic structure except for the case p = 3. (In the case of p = 4,
we can show that the corresponding 22-dimensional subalgebra does not admit

an “exact” left invariant symplectic structure.)

§ 4. The case of Sp(p, q)

In this section, we treat the remaining Grassmann type Lie group G = Sp(p, q)
(p > q > 1). The construction is somewhat different from the previous cases
SU(p, q) and SO(p,q). (See Remark after the proof of Proposition 10.)

Proposition 10 : There exists a left invariant Poisson structure m on the Lie
group Sp(p,q) (p > q > 1) with

2°+2p (p=gq)
rankm =< 2pg+p (p = even > q).
2pg+p—1 (p=odd>q)

To prove this proposition, we first express the Lie algebra of Sp(p,q) in terms
of quaternions H (cf. [12]). An element of H is expressed as ag + a1i + asj + ask
(ap € R), and the product of 4, j, k is given by the rule
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i2=j2=k2=—1,
ij=k, jk=1i, ki=1j,
ji=—k, kj =—i, ik =—j.
We imbed the field of real numbers R and the field of complex numbers C into
H in a natural way. The conjugate of w = ag + a1¢ + asj + azk € H is given by
W = ag — a1 — asj — agzk. Then the following identity holds:

wiwz = wy wy for wy, ws € H.

Under these notations, we can express the Lie algebra of Sp(p, q) as

spp,q) ={X € Mp+aq.p+qgH) | X, +I,,X =0}

_ A 'B tA+A=0, tC+C =0,
-\ B C /| AeM(p,p;H), BeM(q,p;H), CeM(gqH) [’
P g
where I, , = ( Ié’ _OI and I, is the identity matrix of degree p. In general,
q

an element X € M(n,n;H) can be uniquely expressed as X =Y + jZ (Y, Z €
M(n,n;C)), and the map

. Y —-Z
Y +jZ— ( 7 7 )
gives a realization of the Lie algebra M (n,n;H) in M(2n,2n;C). (Note that
jZ = zj for z € C.) By this map, the Lie algebra sp(p, q) is identified with the
Lie algebra
A]_ tﬁl —ZQ t§2
B i —_Ez —Cs
Ay, ='By A 'By
B, C» B1
P q P q

A€ u(p), Ci € U(Q);
tAQ = A27 t02 = Cz

ST S ISR S

We remark that the definition of sp(p, ¢) in [13; p.446] is slightly different from
the above. But it is easy to see that two definitions coincide by the isomorphism
given by X — P~1X P, where

I, 0
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In the following, we assume that the Lie algebra sp(p,q) is always realized in
M(p+ q,p+ q;H) in the above way.

Proof of Proposition 10: We first treat the case p = ¢q. We define two subspaces
g1 and gs of g = sp(p,p) by

X X5 \|,~ }
o {(JX JXJ>
b o dyi 0
6 = (0 _D)D: L €R
0 dyi

We put ¢’ = g1 @ g2, and express the element of g’ simply by the pair (X, D),
where X and D are matrices appeared in the above definition of g;. Then, we
have

(X1, D1), (X2, D2)] = ([X1, D] — [X2, D1], 0) € g1,

and hence g’ is a (2p?+2p)-dimensional subalgebra of sp(p, p). We define elements
of g’ by

Xij = (Bij — Eji, 0), Yy = (iEj; +iEj, 0),

Zij = (JEij + jEji, 0), Wij = (kEij + kEj;, 0),

D; = (0, iEy),
where E;; is the matrix such that the (4, j)-component is 1 and other components
are all zero. Then, the bracket operations of these elements are given by

[Xij, D] = 0 Yis — Oir Yy,
[Yij, D] = 0ju Xni + 0ik Xy,
[Zij, Dk] = =0k Wi — 6k Wi,
(Wij, Di) = 06 Zki + Oir Zyj,
and remaining brackets are all zero. The elements {X;;}i1<icj<p U {Yij, Zij,
Wijti<i<j<p U {Di}i1<i<p form a basis of g', and we denote its dual basis by
aij, Bijs Vijs €ijs M4, respectively. Then, from the above bracket table, we have
daij = Bij A (s — i) (6 <),
dBi; = auj N (i — pg) (i <J),
dBii = 0,
dvij = —ei5 A (s + 15) (0 <),

deij = vij N (i +p5) (0 <),
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Hence, the 2-form w = ZKJ. ai; A Bij + Zigj Yij N €ij + >; Bii A pi is non-
degenerate and closed, which gives a desired left invariant symplectic structure
on g'.

Next, we treat the case p > ¢. In this case, we express an element of sp(p, q) C
M(p+q,p+¢;H) as

A -'B C q tA+A=0
B D *'E |p-¢q, 'D+D=0.
¢ E F q tF+F=0
q pP—q q

Using this notation, we construct a subalgebra g’ of sp(p, ¢) in the following way.
We define the elements of sp(p, q) by

Xij = 0 0 0
—k‘(E@']‘ + Eji) 0 ’I:(E@'j + Eji)

Ey—E; 0 j(Ey— Ej)
X} = 0 0 0 ,
J(Eyj — Eji) 0 —(Eij — Ej)
Eij—E; 0 j(Eiy+ Ej)
Y, = 0 0 0 ,
_j(Eij +E]z) 0 Ei' _Ej'
Z(Ez'j + E],) 0 k(E,J — Ej,’)
Y}, = 0 0 0 ,
k(Eij Eﬂ) 0 —i(E,-j + Ejz-)
0 -E; 0 0 iE; 0
Zy=| By 0 jE; |, zi=|iE; 0 kE; |,
0 —jE; 0 0 —kEj; 0
Wz' = 0 0 0 5 Dz = 0 ZEz'i 0
0 0 —iE; 0 0 0

Note that the spaces {X;; (1 <4 < j <q), Xj; (1 <i<j <}, {Z, Zi
(1<i<p-gq,1<j<q)} just coincide with the spaces
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X 0 Xj

0 0 0 X cu(q) p,

JX 0 jXj

0 —t4A4 0

A 0  Aj ||[AeM((p-4q,4:C);,
0 —jtA 0

respectively. The bracket operations of these matrices are given by

ij» Yrt) = 2056 Xy + 26 X1,
1J’Ylél] _261sz{l - 251'ng"17
l] 2(5ij{ — 2(5,'le-
] 25]le — 251kX]l;

- ijz'k - 5“9Xjk’

[

[

[

[

[ ]
(X5 Wi] = 65 Xir — ik Xk,
Yij, Y] = 2651 Y — 200 Ykj,
[Yijaykll] = 251'/6}71 - 26ilYkIj7

[ ka'z] = =261 Y + 204 Ykj,
[Yij> Zi]

[

[

[

[

[

[

[

= Zy) = —20uZy;,
Y,], Zy) = Y3, Zw) = —26uZy,;,
Yij, Wil = 1Y, — 0¥,
Wi = —0xYir + 0irYrj,

Zij, Zw) = [Zi;, Zyy) = —0u X3y,

Zij, Zy) = —0u X

Zij, Wi] = J'kZz{k’ [Z};, Wi] = =0k Zix,
ij>» D] = —6iZyj, [Zi;, Di] = OinZnj,

[ R

and remaining brackets are all zero. Using these relations, we know that the
space g' spanned by the matrices

Xi;(1<i<j<y), X; 1<i<j<y),
Vi 1<i<j<qg), Y 1<i<j<q),
Zij 1<i<p-¢q,1<j<q), Zj; 1<i<p-¢q,1<j<q)
Wi (1<i<g), D; (1<i<p-—yq)
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forms a (2pq + p)-dimensional subalgebra g’ of sp(p,q). (We remark that X;; =
Xji and X;; = —X,, but there is no linear relation between Y;;, Yj;, Y/, YJ;,
and g’ does not contain elements Y;; (i > j), Y; (i > j).) We denote by aj,
iy Bijs Bij» Vijs Vij» € i the dual basis of g'*. Then, from the above bracket

relations, we have

i—1 i—1
doy; = =2 Z aij A Bji — 4oy A Bi — 2 Z o A B + Zvﬂ A
Jj=1
and dey = --- =deg = dpy = -+ = dup—g = 0. Hence, in the case p = even,
the 2-form
p—q g p/2
- _QZaZ]/\IBJz 4ZazzAﬂzz 2204“/\5;@_*_227]1/\7”‘*‘2 Voj— 1/\1/21
Jj<i j<i j=1i=1
gives the desired symplectic form on g', where v1 = €1, -+, vy = €q, Vgq1 =
1, "+, Vp = fip—q. In the case p = odd, we can construct the subalgebra and

the symplectic form on it completely in the same way by deleting the last matrix
D,_, from the above construction. |

Remark : As in the case of su(p,q) in § 2, we can construct a subalgebra of
sp(p, ¢) with dimension 4pq + 2[(p — q) /2] completely in the same way by chang-
ing the field C into H. But it seems that this subalgebra does not admit a
left invariant symplectic structure, and we must adopt a different construction
as above. (We can verify this conjecture for the Lie algebras sp(1,1), sp(2,1),
sp(3,1) and sp(2,2), though the Lie algebra sp(1,1) ~ 0(4,1) admits another
type of 4-dimensional subalgebra possessing a left invariant symplectic structure.
cf. Proposition 7.) This difference comes from the fact that general sp(p, q) does
not admit a structure of a graded Lie algebra of the second kind satisfying the
condition dim l1» = 1 in contrast with su(p, q) and o(p, q) (cf. [8], [14]).

§ 5. The cases of SU*(2n), Sp(n,R) and SO*(2n)

In this section, we treat the remaining non-compact classical simple Lie groups
of non-Grassmann type.

Proposition 11 : There exists a left invariant Poisson structure m on the Lie
group SU*(2n) (n > 2) with rank 7 = 4n(n —1).
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Proof: The Lie algebra of SU*(2n) is given by
. A B )
su*(2n) = 5 I A,Be M(n,nC), TrAeiR;.

We express the above matrix simply as (A, B). Under this notation, we consider
the subspace g’ of su*(2n) consisting of matrices (A, B) such that an; = bp; =0
for1<i<n-1,1<j<mn,and ap, = —Re(ai1 + -+ an—1,n—1), where a;;
and b;; are the (¢, j)-components of A and B, respectively. Then, we can easily
check that g’ is a 4n(n — 1)-dimensional subalgebra of su*(2n). Next, we define
the element a € g™* by

a((A, B)) =ai12 +a3+---+an-1,n,

and put w = —da. Then, as in the case of SL(n,R) [2; p.180] (or § 7 (2)), we
can show that w is non-degenerate, and hence it gives a symplectic structure on
g'. We left detailed calculations to the readers. ]

Remark: In the case of n = 2, the Lie algebra su*(4) is isomorphic to o(5,1),
and the above subalgebra g’ corresponds to the subalgebra of 0(5,1) constructed
in Proposition 7.

Proposition 12 : There ezists a left invariant Poisson structure m on the Lie

group Sp(n,R) with rank7 = n(n + 1).

Proof: We remind that the Lie algebra of Sp(n,R) is given by

sp(n, R) = { ( é 2 )‘A, B, C € M(n,mR), ‘B = B, tczc}.

Using this notation, we put

=1(v )

Then, g’ is an n(n + 1)-dimensional subalgebra of sp(n,R). Next, we define

(4 2)-mn

and put w = —da. Then, it is easy to check that w gives the desired symplectic

A is upper triangular, ‘B = B} )

a € g'™* by

form on ¢'. |
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Proposition 13 : There exists a left invariant Poisson structure m on the Lie
group SO*(2n) with

nn—1) (n>2,n#4)

rankﬂ':{ 14 (n = 4)

The Lie algebra 0*(8) is isomorphic to 0(6,2), and hence from Proposition 7,
we know that 0*(8) possesses a Poisson structure 7 with rankm = 14.

To prove the proposition for general case, we first define four real vector spaces

by
e (5 e
e 5 ren)
= {( 5 8 )favec

w={(5)]ee}

Clearly, M, is a subspace of M3. Then, these spaces possess the following prop-

erties. The verification of these facts are easy.
Lemma 14 : Assume X;,Y; € M; (i =1~ 4). Then, we have
XoV, = XoV3 = XV, =1X3Y3 =1 X3V, =XV, =0,
X1Ys, XoY1, X3'V5 + V3! X3, Xy'Vy + Yi' Xy € Mo,
X1Ys, X3Y1, X3Ys, X3V, XsV3, X3Y3, X5'Y3, X'V, € Ms,
X3'Y; =Y3' X3 € M3, X4'Yy =Y,' X, € M,
XYy, X3Yy, X3V, € My.
Proof of Proposition 13: We assume n > 2 and n # 4. The Lie algebra of

SO*(2n) is given by

0*(2n) = {( o )‘AEo(n,C), tB:EeM(n,n;C)},
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and we express the above element of 0*(2n) simply as (A, B). We first consider
the case n = 2r. We express the matrices A and B in terms of (2,2)-blocks as

follows:

All ot Alr Bll e Blr
A= ... B= ... 7

’

Arl Tt Arr Brl Tt Br’r
where A;;, B;; € M(2,2;C). Clearly, we have

Aji=—'4;;, Bji="Bj, 1<i<j<r,

and Ay € 0(2,C), !By; = By, 1 <4 < r. Under these notations, we consider the
subspace g’ of 0*(2n) consisting of the pair (4, B) which satisfies

Aji € My, Bij € My, 1<i<r,
Aij, Bij € Ms, 1<i<j<r

Then, by using the properties in Lemma 14, and the formula
[(A, B), (C, D)] = ([A, C]- BD + DB,AD — DA+ BC — CB),

we can directly check that g' is the n(n — 1)-dimensional subalgebra of 0*(2n).

For example, for i < j, we have

[A,Clij = ) (~'AkiChj + 'ChiArj) + AiiCij — CiiAyj
k<i
+ Y (ACrj — CinArj) + AijCj — CijAy;
i<h<j
+ > (—Ai'Cir + Ca* A1) € Ms
i<k

on account of the property !X3Ys = 0 and X,Y3, X3Y3, X3Y;, X3'Ys € Ma.
Next, we define the element « of g'* by

a((A, B)) = Tr B,

and put w = —da. Then, we can easily show that w gives the desired symplectic
structure on g'.

Next, we consider the case n = 2r + 1. In this case, we express A and B as
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All e AlT’ ag Bll ot BIT /81
e e B .

Ay - A oar |2 Bu -+ By B |

~tay - —ta, 0 tﬂl e tﬂr b

where «;, 8; € M(2,1;C), and b € R. Under these notations, we consider the
subspace g' of 0*(2n) consisting of the pair (4, B) which satisfies

Aii € My, Biji € My, 1<i<rm,

Ajj, Bij € M3, 1<i<j<r,
aiaﬂieMéla ]-SZSTa
b=0.

Then, by using Lemma, 14 again, we can show that g’ is the n(n — 1)-dimensional
subalgebra of 0*(2n). The symplectic structure on g’ can be constructed com-
pletely in the same way as in the case of n = 2r, and we left detailed calculations
to the readers. |

§ 6. The case of complex simple Lie groups

Finally, we treat the case of complex simple Lie groups, considered as real Lie

groups. We first prepare the following general result.

Proposition 15 : Let h be a real Lie algebra with a left invariant symplectic
structure. Then, the complexification hC of h considered as a real Lie algebra
also possesses a left invariant symplectic structure.

Proof: By using the symplectic structure w on §, we define the R-valued skew-
symmetric map w' on h€ by

w'(X1 +1iY1, X +iY2) = w(Xy, X2) —w(Y1, Ya),

for X;, Y; € h. Then, it is easy to see that w' is closed and non-degenerate on
hC, and this gives the desired symplectic form. |

By this proposition, we know that if a real Lie algebra g possesses a left invari-
ant Poisson structure with rank 7 = 2k, then its complexification g€ considered
as a real Lie algebra admits a left invariant Poisson structure with rankw = 4k.

Applying this proposition to each real form of complex simple Lie algebras, we

obtain the following proposition.
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Proposition 16 : Classical complex simple Lie groups considered as real Lie

groups possess a left invariant Poisson structure with the following rank :

SL(n,C)R : rankm = 2n(n — 1),
O@2n+1,C)R : rankw = 2n(n + 1),
Sp(n,C)R : rank 7 = 2n(n + 1),
2n? (n = even)
O(2n,C)R :rankm =< 2(n?—1) (n=odd, n#3)
24 (n=3)

To prove this proposition, we have only to find the highest rank solutions =
constructed in the previous sections for all real forms of each complex simple Lie
algebra. We only exhibit the list of real forms giving the highest rank solution :

sl(n,C) : sl(n,R),
02n+1,C): o(n+1,n),
sp(n,C)  : sp(n,R),

o(n+1,n—1), o(n,n) (n = even)
o(2n,R) : o(n+2,n—2), o(n+1,n—1), o(n,n) (n=odd,n #3).
0(3,3) (n=23)

Detailed examination of this fact is easy and left to the readers.

Thus, combining the propositions in § 2 ~ § 6, we complete the proof of
Theorem 1.

§ 7. Final remarks

In this final section, we state some results and comments related to left invariant

Poisson structures.
(1) Poisson-Lie groups.

We say that a Lie group G with a Poisson structure { , } is a Poisson-Lie group
if the multiplication map G x G — G is a Poisson map, where G x G is endowed
with the product Poisson structure (cf. [10], [24]). In the following, we regard
the element 7 € A%g as the 2-vector at the identity element of G, and we denote
by 7 (resp. 7) the left invariant (resp. right invariant) 2-vector field extended
to the whole space G by the group action. Drinfel’d [10] proved that T — 7 gives

a Poisson-Lie group structure on G if and only if [r,7]s is invariant under the
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adjoint action of G. (See also [24; p.173].) In addition, in [18], it is shown that
if G is connected and semi-simple, or if G is compact, then all Poisson-Lie group
structures on G are expressed in this form 7—7. In particular, from these results,
we know that the solutions of the CYB-equation [7,7]s = 0 constructed in this
paper give a new class of Poisson-Lie group structures on G because [r,7]g is
clearly Ad G-invariant in this case. The 2-vector m € A%g with Ad G-invariant
[7,7]s (# 0) is studied in detail and classified in [3], [7] (and [25] for the case
g = 0(3,1)), though there was no detailed study of the solution of the CYB-
equation [r,7]g = 0 itself except some special cases, as we stated before.

(2) Solutions of the CYB-equation for G = SL(n, R).

At the end of the paper [2], Belavin and Drinfel’d constructed several solutions
of the CYB-equation for the groups GL(n,C) and SL(n, C). Their construction
is also valid in the real case, and the highest rank solutions among them are of
rank n(n — 1) for both Lie groups. For example, in the case of g = gl(n,R), we

define the n(n — 1)-dimensional subalgebra g’ by

0 0
and the element a € g'* by

a(X)=z12+23+ -+ Tp_1n

for X = (z;;) € g'. (Note that g’ is naturally isomorphic to the affine Lie algebra
a(n — 1,R).) Then, it is easy to check that the exact 2-form —da gives the
symplectic form on ¢, and the corresponding 2-vector 7 is expressed as

T = E Eji NEp_jiikt-
1<i<j<k<n—1

The n(n — 1)-dimensional subalgebra of sl(n, R), the symplectic form on it, and
the 2-vector 7 for sl(n, R) can be obtained from this example by projecting them

to sl(n,R). In particular, we have

= Z (Ejs —1/n-05iln) N Epjyigs1
1<i<j<k<n—1

for sl(n, R), where T, is the identity matrix of degree n. (The similar results can

be found in several references such as [5], [19], [20], etc. These solutions satisfy
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the equality rank7m = dimG — rank G, and are relatively high rank solutions
compared with other non-compact Lie groups in Theorem 1. See (5) below.)

For both Lie groups GL(n,R) and SL(n,R), by applying the result of Dynkin
[11], we can prove that the examples in [2] give the maximum of rank 7 among the
solutions of the CYB-equation. We can also show that for the group SL(n,R)
(n > 2) the solutions of the CYB-equation with rank 7 = n(n — 1) are uniquely
determined under the action of the automorphism group of sl(n, R). For details,
see [1].

The classification of the solutions for GL(2,R) is given in [17; p.36], and we
can further show that the solutions are essentially deformable in contrast with
the group SL(n,R). See also (4) below.

(3) Maximum value of rank 7 for low dimensional Lie groups.

At present, as for other non-compact simple real Lie groups, the maximum of
rank 7 is determined only in the following cases, as stated in Introduction:

G max rank 7 maximum subalgebra
SU(2,1) 4 dim = 5
S0(3,1) ~ SL(2,C)R 4 dim = 4
SO(4,1) ~ Sp(1,1) 4 dim =7
S0(3,2) ~ Sp(2,R) 6 dim =7
SO(5,1) ~ SU*(4) 8 dim = 11

For example, it is known that the maximum dimension of proper subalgebras of
su(2,1) is 5 (cf. [22; p.1390]). Hence, we have max rank 7 = 4 for SU(2,1), as
a trivial consequence of Theorem 1 and Proposition 2. In the same way, we can
show the above result for SO(3,2) because the maximum dimension of proper
subalgebras of o(p,q) is equal to 1/2- {(p+ ¢)> —3(p+¢q) + 4} for p+ ¢ > 3
and p + q # 4, 6. (This fact follows immediately from the result of Dynkin [11].
From his result, we can show that the maximum dimension of complex proper
subalgebras of the complex Lie algebra o(n, C) is 1/2-(n? —3n+4) for n > 3 and
n # 4, 6. Existence of the above dimensional real subalgebra of o(p, q) is shown
by taking the non-negative part of the graded Lie algebra structure of the first
kind o(p,q) = -1 ® lo ® I1 (cf. [15]).) For the Lie algebras 0(3,1) and o(5,1),
we can show that the maximum dimensions of proper subalgebras are 4 and 11,
respectively, by classifying high dimensional subalgebras, and the above result for
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S0(3,1) follows immediately from this fact. But for two Lie algebras o(4, 1) and
0(5,1), there are several 6- and 10-dimensional subalgebras, and hence we must
classify such dimensional subalgebras and must show that these subalgebras do
not possess left invariant symplectic structures.

For other remaining high dimensional Lie groups, we cannot carry out such
procedure any more. But, it seems to the author that the values in Theorem 1

give the maximum of rank 7 for most Lie groups.
(4) Algebraic sets defined by the CYB-equation.

In terms of a basis { X;} of g, we express the bracket operation of g by [X;, X;] =
> cij k, and express 7 as ) a;;X; A X;. Then, up to a non-zero constant, the

Schouten bracket [7, 7] is equal to

Z(aiqajrcgj + airajpcgj + aipajqczrj)Xp NXgNXr € Ng,
and hence the condition [m,7]s = 0 is equivalent to [r2,r13] + [r12,r23] +
[r13,72%] = 0 stated in Introduction. (Compare the equation in [2; p.162].) Thus,
in order to obtain left invariant Poisson structures on G, we have only to solve
this system of quadratic equations, and for small dimensional Lie groups, we
can obtain all solutions of the CYB-equation in this way. For example, in the
case G = GL(2,R), we can show that the set of solutions is decomposed into a
union of two irreducible 3-dimensional varieties (cf. [17; p.36]), one of which is
the 3-dimensional plane in A%2gl(2,R) ~ RS consisting of 2-vectors of the form
X A (Er1 + Es) (X € gl(2,R)), and the other of which is the non-linear variety

consisting of the elements

a b d -b a b 10
i(c —a)/\(c d )’ (c —a)A(O 1)
with a? + bc = 0. In the case of SL(2,R), the solutions constitute an irreducible
quadratic cone in A%s[(2, R) ~ R3 (cf. [21]), which consists of three adjoint orbits
including the trivial one. But unfortunately, for higher dimensional Lie groups,
we cannot solve the system of quadratic equations in an explicit form, or even

cannot determine whether the algebraic set defined by [m,7]s = 0 is irreducible

or not.
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(5) An upper bound on rank 7 for exact symplectic structures.

In Proposition 2, we now restrict ourselves to the “exact” symplectic structure
on g'. Then we have the following restricted “upper bound” on max rank .

Proposition 17 : Assume that the Lie algebra g of G is semi-simple, and a
subalgebra g' of g admits a left invariant “exact” symplectic structure. Then, the
inequality dim g’ < dim G — rank G holds.

Remark: As stated in (2), the equality in this proposition holds for SL(n,R).
(The symplectic structure constructed in [2] was exact.) But the value dim G —
rank G does not give the actual upper bound of rank = for general non-compact
Lie groups. Remind the examples in (3) above.

To prove Proposition 17, we use the following well known result.

Lemma 18 : Let h be the Lie algebra of a Lie group H. Then, for a € bh*, the
exact 2-form doa gives a left invariant symplectic structure on H if and only if

On(a) is open in b*, where On () is the coadjoint H-orbit of a.
For the proof of this lemma, see for example [19].

Proof of Proposition 17: Let w = da (a € g'™*) be a symplectic structure on G’,
where G’ is the Lie subgroup of G with Lie algebra g'. Then, since the dual map
i*: g* — ¢'* of the inclusion i: g’ — g is surjective, there is an element 8 € g*
satisfying i*(8) = a. In addition, the restriction i*: Og:(8) = Og:(«) is also
surjective since it is equivariant. Hence, by putting H = G' in Lemma 18, we
have

dim O (8) > dim Og: (B) > dim Ogr(a) = dim G'.

On the other hand, in the semi-simple case, we already know that the maximum
of the dimension of Ad G-orbit in g is dim G —rank G, and the coadjoint represen-
tation is equivalent to the adjoint representation. Hence, we obtain the desired

inequality. |

From this proof, we know that if the equality in Proposition 17 holds, then
there exists a subgroup G' with dimension dim G — rank G acting almost freely

on an element of g, which is a quite strong condition on G.
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As we stated in Introduction and (3) above, concerning the value rank 7 itself,
we do not have such an upper bound as Proposition 17 for general non-compact
real simple Lie groups, and to obtain such upper bound is a quite interesting
and important problem in considering left invariant Poisson structures. In our
experience, there actually exist several types of even high dimensional subalgebras
of g which never admit left invariant symplectic structures, and it is a profound
mystery what makes g’ a subalgebra with (or without) left invariant symplectic

structures.
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