UNIQUENESS OF LEFT INVARIANT SYMPLECTIC
STRUCTURES
ON THE AFFINE LIE GROUP

YOSHIO AGAOKA

ABSTRACT. We show the uniqueness of left invariant symplectic structures on
the affine Lie group A(n,R) under the adjoint action of A(n,R), by giving
an explicit formula of the Pfaffian of the skew symmetric matrix naturally
associated with A(n,R), and also by giving an unexpected identity on it which
relates two left invariant symplectic structures. As an application of this result,
we classify maximum rank left invariant Poisson structures on the simple Lie
groups SL(n,R) and SL(n,C). This result is a generalization of Stolin’s
classification of constant solutions of the classical Yang-Baxter equation for
sl(2, C) and sl(3, C).

1. INTRODUCTION

The purpose of this paper is to show the uniqueness of left invariant symplectic
structures on the affine Lie group A(n,R), and as its application, to classify maxi-
mum rank constant solutions of the classical Yang-Baxter equation for two simple
Lie groups SL(n,R) and SL(n,C), which gives a partial answer to the question
posed by Liu and Xu [7; p.36].

It is well known that the even dimensional Lie group A(n,R) defined by

A(naR)={(’g v ) A€GL(n,R) }

veER”
admits a left invariant symplectic structure, and its structure is described by several
types of symplectic forms (cf. [2], [3], [8], [9], [10]). In this paper, we first prove
that they are essentially equivalent. More precisely, we show that any left invariant
symplectic structure on A(n,R) is equivalent to each other under the adjoint action
of A(n,R).

For general Lie groups G, it is well known that the exact 2-form da (a € g*)
gives a left invariant symplectic structure on G if and only if the coadjoint orbit of «
is open in g* (cf. [8]). This fact implies that in the case H?(g, R) = 0, left invariant
symplectic structures on G (provided they exist) are locally rigid under the adjoint
action. But it does not imply the global rigidity (= uniqueness) because there may
exist a different type symplectic structure situated outside of the coadjoint orbit of
da. And to show the global rigidity, we need a more delicate algebraic device fitted
to the group structure of G, which is in general quite difficult to find.
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In the case of A(n,R), we already know the vanishing of the second cohomol-
ogy H?(a(n,R),R), where a(n,R) is the Lie algebra of A(n,R), and hence, any
left invariant symplectic structure on A(n,R) is exact. For this group, we prove
the global rigidity by showing unexpected identities concerning the Pfaffian of the
skew symmetric matrix naturally associated with a(n,R) (Lemma 2). Precisely,
we show that in terms of these identities, the non-degeneracy of the exact 2-form
da is equivalent to the non-degeneracy of certain matrix g, which is canonically
determined by a € a(n,R)*. In addition, we show that the coadjoint action of
this matrix g, € A(n, R) transforms the exact symplectic form da to the standard
one which we fixed in advance. And these facts imply the uniqueness of left invari-
ant symplectic structure on A(n,R). To construct the matrix g,, we use matrices
appearing in Cayley-Hamilton type theorem.

As an application of this result, in the second half of this paper, we classify
maximum rank left invariant Poisson structures on the Lie groups SL(n,R) and
SL(n,C) (cf. [1], [2], [13])- It is known that left invariant Poisson structures
on a Lie group G correspond to constant solutions of the classical Yang-Baxter
equation, which also correspond to the pairs consisting of Lie subalgebras of g
and non-degenerate 2-cocycles of them (cf. Proposition 4). In this standpoint,
Belavin and Drinfel’d [2] gave an example of a constant solution of the classical
Yang-Baxter equation for SL(n,C) and GL(n, C) with rank = n(n — 1). But the
complete classification of solutions for these groups seems hopeless as stated in [2;
p-179] because there are too many degenerate low rank solutions. In this situation,
it is a natural and fundamental problem to determine which is the most generic
(= highest rank) solution of the classical Yang-Baxter equation. The second main
purpose of this paper is to give the answer to this question for two simple Lie groups
SL(n,R) and SL(n,C).

We first show that the maximum rank of solutions of the classical Yang-Baxter
equation is n(n — 1), namely, the solution constructed in [2] is of maximum rank.
We prove this fact by using Dynkin’s classification of subgroups of classical Lie
groups [6]. Next we classify such maximum rank solutions under the action of the
adjoint groups or more generally the action of the automorphism groups of Lie
algebras. The results for SL(n,R) and SL(n,C) are summarized in Theorem 3
and Theorem 6, respectively. In particular, for both groups, the maximum rank
solution is uniquely determined under the action of the automorphism groups of
Lie algebras. This result for SL(n,C) may be considered as a generalization of
Stolin’s classification of constant solutions of the classical Yang-Baxter equation for
s[(2,C) and sl(3, C). To prove these theorems, we use the facts that the maximum
dimensional proper subalgebra of sl(n, R) is isomorphic to a(n — 1, R) (Proposition
5), and the uniqueness of left invariant symplectic structures on it which we prove
in section 2.

For other simple Lie groups, the examples of high rank constant solutions of the
classical Yang-Baxter equation were known only for a few cases. Concerning this
problem, in the paper [1], we constructed a non-trivial high rank solution of the
classical Yang-Baxter equation for each classical non-compact simple Lie group.
And as a next problem, it is desirable to decide whether the global rigidity also
holds for these groups, as in the case of SL(n,R) or SL(n,C).
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2. LEFT INVARIANT SYMPLECTIC STRUCTURES ON A(n,R).

Let A(n,R) be the affine Lie group defined in Introduction. The first purpose
of this paper is to show the following theorem.

Theorem 1. The Lie group A(n,R) admits a unique left invariant symplectic
structure under the adjoint action of A(n,R).

We first explain the explicit construction of a left invariant symplectic structure
on A(n,R), following [2]. The Lie algebra of A(n,R) is expressed as

u(n,R):{(g‘ 8) A€ gl(n,R) }

veR"
and it is known that the second cohomology group H?(a(n, R), R) vanishes (cf. [3],
[8], [9])- Hence, any left invariant symplectic structure on A(n,R) is exact. Let
E;; be the matrix such that the (i, j)-component is 1 and other components are all
zero. Then, {E;j}1<i<n,1<j<n+1 forms a basis of a(n,R). We denote by {E};} its
dual basis, and put

ao=Efy +E53+---+E; 11, w=—dag,

ie, wX,Y) = ao([X,Y]) for X, Y € a(n,R). Then, the 2-form w is non-
degenerate and gives a left invariant symplectic structure on A(n,R). (cf. [2].
This fact can be also verified by using Lemma 2 (1) below.) As we stated above,
any left invariant symplectic structure on A(n,R) is exact, and hence to prove
Theorem 1, we only need to show the following fact: If —da is non-degenerate for
a € a(n,R)*, then there exists an element g € A(n,R) such that (Ad g)*ap = a,
where (Ad g)* : a(n,R)* — a(n,R)* is the dual map of Ad g : a(n,R) — a(n,R).
(In the following, we often say that a € a(n,R)* is non-degenerate in case —da is
non-degenerate.)

To prove the above fact, we first define the polynomials depending on an (n,n)-

matrix A as follows. Let {e1,--- ,e,} be the eigenvalues of a matrix A, and put
f(A) = (=DF > &g,
i1 <--<in

for 0 < k < n. For example, we have
fO(A) = ]-7
fl(A) =-Tr Aa
f2(A) =1/2- {(Tr A)? — Tr (A?)},
f3(4) =—-1/6-{(Tr A)® —3Tr A-Tr (4%) +2 Tr (43)},

fn(A) = (=1)"det A.
Note that fi(A) is invariant under the adjoint action of GL(n,R). Next, we put
or(4) = A+ fL)AR? 4+ H(A)A P 4+ (AL

for 1 < k <m+1. Clearly, from Cayley-Hamilton’s theorem, we have ¢,,11(A4) = 0.
Now, we express a € a(n,R)* as

a= Z a;; Ef; + Z bk B ny1

1<i,j<n 1<k<n
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and define the (n + 1,n + 1)-matrix g, by

- ( Pu(Ab - pa(Ab i (A)b 0 )
¢ fa(A) - (4 A4 1)
where A = (a;;) and b ="*(by - - - b,). We rearrange the basis of a(n,R) as
X1 = FEq, Xn = Ein,
Xn+1 = E21, e X2n = E2na
Xn27n+1 =En, T X2 = Epy,
Xn2+1 = El,n+17 e Xn(n+1) = En,n+1-

Then, the following key lemma holds. Theorem 1 follows immediately from this
lemma.

Lemma 2. (1) The Pfaffian of the skew symmetric (n(n + 1),n(n + 1))-matriz
(a([Xi, X;])) is equal to | go |. In particular, —da is non-degenerate if and only if
the matriz g, is non-singular.

(2) If 9o is non-singular, then g, € A(n,R) and the equality (Ad go)*ap = «
holds.

Proof. (1) We show the equality
(#) det(a([Xs, X;5])) = [ en(A)b -+ @2(A)b @1 (A)b .

To prove (#), we consider the complexified version of this equality, i.e., we assume
that a € a(n, C)*, A € gl(n,C) and b € C". Under this situation, we consider the
coadjoint action (Ad ¢)* (g € GL(n,C) C A(n,C)) on both sides of the equality
(#). If a € a(n,C)* corresponds to the pair (4, b) € gl(n,C) ® C", then the
element (Ad g)*a corresponds to the pair (fgA*g~!, tgb). Hence, by this action,
the right hand side of the equality (#) is multiplied by | g |* because ¢ (*gAtg~!)
_t t. -1

="gpr(A)'g .

On the other hand, by the same action, the matrix (a([X;, X;])) is transformed
into *(Ad g)(a([X;, X;]))(Ad g). Hence, the left hand side is multiplied by | Ad g |?,
where Ad g : a(n, C) = a(n,C). The map Ad g preserves both subspaces gl(n, C)
and C" in a(n,C), and it is easy to see that

det(Ad glgin,c)) =1, det(Ad glcr) =1g]|-

Hence, both sides of the equality (#) are multiplied by | g |> under the action of
(Ad g)*.

Then, since generic elements A € gl(n, C) are transformed into diagonal matrices
by an adjoint action of GL(n,C), we only need to show the above equality (#) in
the case A is a diagonal matrix. Express A = diag (a1 --- ay), and we show that
both sides are equal to

{b1 -+ bn [ [ (ai = ay)}*.
i<j
We first compute the determinant of the skew symmetric (n(n + 1),n(n + 1))-
matrix (a([X;, X;])). For this purpose, we only need to consider the bracket oper-

ations of a(n, C) which take values in the subspace (E;;, Ej n+1) C a(n, C) because
A is diagonal. These are essentially exhausted by

[Eij, Eji] = By — Ej5 (i #7),  [Eijs Ejny1] = Einy1,
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and by using this fact, the matrix (a([X;, X;])) is symbolically expressed as

Eij Eji  Ei Ejj Eingy Ejng
Eij 0 a; — aj 0 0 0 bi
E]’i a; a; 0 0 0 bj 0
E;; 0 0 0 0 b; 0
Ej; 0 O 0 0 0 b;
Eimy1| O b ~b; 0 0 0
Ejns1 | —bi 00 0 -b 0 0

—~

Hence, by considering this table, the determinant of (a([X;, X;])) is equal to

b - bn® det(a([Eij, Eji))izg = {b1---bn [[(ai —aj)}>.
i<j
Next, for the right hand side, we have
[ oAb -+ pa(A)b 1 (A)p] = [ A™1b - Ab b

for any a, and from Vandermonde’s formula, this value is equal to by - - - b, [ [, j (a;—
a;) if A is diagonal. Therefore, the desired equality in Lemma 2 (1) holds.

(2) Assume g, is non-singular. Then, the right multiplication R, : a(n,R) —
a(n, R) gives a linear isomorphism. Hence, we only need to prove the equality for

0 g ) ga (X € gl(n,R), v € R"). Since

i (5 5)0) -0 (3 1)

it suffices to show the equality
" . X w X v
(##) <E12 +oF Eﬂ,n—i—la 9o ( 0 0 >> = ((1, ( 0 0 ) ga)

for X € gl(n,R) and v € R™.
We first consider the case X = E;; and v = 0. In this case, we have

E;j 0\ _ (K 0
gy 0 o)~ VLo o)

where K is a matrix such that the j-th column is equal to the transpose of the i-th
row of the matrix (¢, (A)b -+ ¢1(A)b), and other columns are all zero. Hence, the

left hand side of the equality (#7) is equal to the i-th component of the vector

¢Yn—j+2(A)b. On the other hand, the i-th row of the matrix ( EO”' 8 ) Jo is equal

matrices of the form ( X

to (*bton_ji1(A) fn_jt+1(A)) and other rows of this matrix are all zero. Hence,
the right hand side of (#+#) is equal to

> @ik x {the k-th component of ¢p,_j11(A)b} + b; fo_jt1(A)
= {the #th component of Ay, _;11(A)b} + fn_jt1(A)b;.

But, from the definition of ¢ (A), we have clearly

n—jr2(A)b  ={Apn_j11(A) + fajr1 (A1 }b
= Apnj+1(A)b+ fajr1(A)D.

Therefore, both sides of the equality (##) take the same value.
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Next, we consider the case X = 0 and v = e;, where {e1, -, ey} is the canonical
basis of R™. In this case, it is easy to check that both sides are equal to the i-th
component of the vector b, and this completes the proof of Lemma 2 (2). O

Remark. (1) From this lemma, we know that non-degenerate 1-forms a form an
open dense orbit in a(n,R)*, which implies that the pair (A(n,R),a(n,R)*) is a
(reducible) prehomogeneous vector space (cf. [12]).

(2) We can easily show that the element g € A(n,R) satisfying (Ad g)*ap = «
is uniquely determined for each non-degenerate a. In fact, if g € A(n,R) satisfies
the equality (Ad g)*ap = ag, then by the same method stated at the beginning of
the proof (2), we can show that g = I,,;. We use this fact in section 3.

(3) In [3], Bordemann, Medina and Ouadfel gave several conditions on « such
that —da is non-degenerate. From the above proof, it follows that —da is non-
degenerate if and only if

| A" A" 2p ... b| #£0,

and this condition just coincides with the second condition of Theorem 2.5 in [3;
p-429]. Clearly, the equality

| A" A"2p ... b| =0

gives the defining equation of the algebraic set consisting of degenerate a’s. Non-
degeneracy of a9 = Efy, + -+ + E} ,;; follows immediately from this fact. In
addition, from the above proof, the 1-form defined by

a= Z a; E}; + Z bjE;‘,nJrl
gives a left invariant symplectic structure —da on A(n,R) if and only if a; # a;
(¢ # j) and b; # 0. This example is nothing but the one stated in [3; p.430 ~ 431].
(4) Tt is desirable to show the equality in Lemma 2 (1) by purely algebraic
method, not depending on the topological argument. But unfortunately, we do not
know this type of proof at present.

3. LEFT INVARIANT POISSON STRUCTURES ON SL(n,R) AND SL(n,C).
As an application of Theorem 1, we prove the following theorem.

Theorem 3. Assume n > 2. Then, the mazimum rank of left invariant Poisson
structures on the Lie group SL(n,R) is n(n — 1), and under the adjoint action
of SL(n,R), the number of equivalence classes of mazimum rank left invariant
Poisson structures on SL(n,R) is

2 (n=2 or n=odd>3)
4 (n=even >4)

These Poisson structures are mapped to each other by the automorphism group of
the Lie algebra sl(n,R).

Before the proof, we briefly review some definitions and properties on left invari-
ant Poisson structures on a general Lie group G with Lie algebra g. For details, see
[14], [1]. A left invariant Poisson structure on G is defined by the left translation of
a 2-vector m € A?g which satisfies the classical Yang-Baxter equation [r,7]|s = 0,
where [ , ]s : A%g x A2g — A3g is the Schouten bracket defined by

[(XAY,ZAW]s =[X,ZIANY AW+ X AY,Z|AW — [X,W]AY AZ—-XA[Y,W|ANZ
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(X, Y, Z, W € g). The rank of the Poisson structure means the usual rank of a
2-vector m € A2g. A left invariant Poisson structure can be also described in the
following dual symplectic form (cf. [4]):

Proposition 4. There is a one-to-one correspondence between the set of left in-
variant Poisson structures = on a Lie group G and the set of pairs (¢', w) where g’
is an even dimensional subalgebra of g and w is a non-degenerate 2-cocycle of g'.
Under this correspondence, the equality rank 7 = dim g’ holds.

For the explicit correspondence, see [4], [1]. We can easily see that this corespon-
dence is Ad G-equivariant. In the following, we divide the proof of Theorem 3 into
two steps. First, we classify maximum dimensional proper subalgebras of sl(n,R)
under the adjoint action of SL(n,R), and next, classify non-degenerate 2-cocycles
(= left invariant symplectic structures) of these subalgebras. We first prove the
following proposition, by using the results of Dynkin [6].

Proposition 5. The mazimum dimension of a proper subalgebra of sl(n,R) is
equal to n(n — 1). And in the case n > 3, any n(n — 1)-dimensional subalgebra of
sl(n,R) is conjugate to

o ={(0 —a)
A€egl(n-1,R) }

B A 0
92 = ty —Tr A v e R

under the adjoint action of SL(n,R). These two subalgebras are not conjugate by
this action, but are mapped to each other by the outer automorphism X — —tX.
In the case n = 2, any 2-dimensional subalgebra of sI(2,R) is conjugate to the
above g1. These subalgebras are all isomorphic to the affine Lie algebra a(n — 1, R)
(n > 2), and admit left invariant symplectic structures.

Aegl(n—1,R)
veR*!
or

Proof. In [6], Dynkin classified maximal subgroups of classical complex simple Lie
groups. From his results, we know the following facts: There are three types of
maximal complex subalgebras of the Lie algebra sl(n, C).

(a) reducible maximal subalgebras
(b) irreducible non-simple maximal subalgebras
(c) irreducible simple maximal subalgebras

From Theorem 1.1 in [6; p.252], it is easy to see that the largest dimension of the
subalgebras of type (a) is n(n — 1), and these subalgebras admit a 1 or (n — 1)-
dimensional invariant complex subspace of C™.

It is also easy to see that the dimensions of the subalgebras of type (b) ([6;
p.253]) are smaller than n(n — 1). As for the subalgebras of type (c), we can see
that the dimensions of these subalgebras are smaller than n(n — 1) by checking
low dimensional irreducible representations of sl(k + 1,C), o(4k + 2,C) and the
exceptional Lie algebra Fg. (See [6; p.253 ~ 255].) Combining these results, it
follows that the maximum dimension of proper complex subalgebras of sl(n, C) is
n(n—1), and these subalgebras admit a 1 or (n—1)-dimensional invariant subspace.

Now, assume n > 3, and let g’ be an n(n — 1)-dimensional real subalgebra of
sl(n,R). (A real subalgebra of this dimension actually exists.) Then from the
above fact, g’ is the maximum dimensional subalgebra and the complexification
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¢'C admits a 1 or (n — 1)-dimensional invariant complex subspace of C*. Then
by an elementary argument, it follows that the action of g’ on R™ is reducible.
By using the assumption dimg g’ = n(n — 1), we can easily see that g’ must be
expressed in the form g; or go in Proposition 5 if we suitably change a basis of R™.

The verification of the statement for s[(2, R) is straightforward, and the remain-
ing statements in Proposition 5 are almost trivial. For example, the subalgebra g;
is isomorphic to a(n — 1,R) by the isomorphism

A A+TrA-I,_
fﬁﬂﬁ(o_{iA)H( + v

0 O)Ea(n—l,R).

O

Remark. (1) In the case n = 2, the automorphism X ~ —!X coincides with the
0 1

inner automorphism Ad ( 1o

given by Ad ( (1) _01 )

(2) In general, in contrast with SL(n,R), not all maximum even dimensional
subalgebras of g admit a left invariant symplectic structure. For example, the Lie
algebra 0(4,1) ~ sp(1,1) admits several 6-dimensional subalgebras. But, we can
show that they never possess left invariant symplectic structures, and the maximum
of rank 7 is 4 for this Lie algebra. (See [1].)

>. The typical outer automorphism of sl(2, R) is

Proof of Theorem 3. On account of Proposition 5, it suffices to determine the
number of equivalence classes of left invariant symplectic structures on g; for n > 2.
We first consider the adjoint action. By an easy calculation, we can show that the
subgroup of Ad SL(n,R) which preserves g is expressed as Ad G1 where

G — X w X e GL(n—-1,R)
t= 0 | x| we RM! :

And we have the following commutative diagram:

o1 N a(n —1,R)

w(P )L L)

g1 T) a(n— I,R)

where f is the isomorphism given at the end of the proof of Proposition 5. We here
put

AdG2={Ad(|X|X |X|w)‘ XeGL(n—l,R)}
0 :

1 weRM!

Then, in case n = odd, it is easy to check that the group Ad G2 just coincides with
AdA(n—1,R). Hence, from the above diagram and from Theorem 1, it follows that
the left invariant symplectic structure on g; is unique under the action of Ad G;.
In the case n = even, we need more delicate arguments. In this case, the above
group Ad G coincides with the proper subgroup of Ad A(n — 1,R) defined by

AdA+(n—1,R)={Ad ( 103 11’)

It can be directly verified that the kernel of the differential d : a(n — 1,R)* —
A?a(n —1,R)* is spanned by the 1-form 8 = Ej; +---+ Ej_, , ;. Hence, the

|P|>0}CAdA(n—1,R).
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equality (Ad g)*da = do’ (g € A(n — 1,R), a, &' € a(n — 1,R)*) holds if and
only if (Ad g)*a = o' + kf for some k € R. We define two non-degenerate 1-forms
ag, a1 € a(n —1,R)* by

ag=FEfy+E;+---+E;, 5, 1 +E, 1,
ar=Ef+E5+--+E;, ,, —E;

n—1,n"*

Then, —dagy and —da; give inequivalent left invariant symplectic structures on
a(n—1,R) under the action of Ad AT (n—1,R). In fact, an element g € A(n—1,R)
satisfying (Ad g)*ao = a1 + k@ is uniquely determined (cf. Remark (2) at the end
of section 2), and it is given by go,+ks constructed in section 2. We can easily see
that the determinant of go,4s is equal to (—1)"~! = —1, and hence aq cannot
be mapped to a; + kB by any element of Ad AT (n — 1,R). In addition, any
non-degenerate a € a(n — 1,R)* can be mapped to ag or a; by Ad AT(n —1,R)
according to the sign of | g, |, and hence in the case n = ewven, the subalgebra g,

admits two left invariant symplectic structures under the action of Ad G;.
In—l

-1
phism preserves the subspace g1, and commutes with the isomorphism f. In addi-
tion, it satisfies the equality

(7))o

and hence, a left invariant symplectic structure on g; is uniquely determined under
the action of the automorphism group. Therefore, combining with Proposition 5,
we complete the proof of Theorem 3. O

Next, we consider the outer automorphism Ad ( . This automor-

Remark. The representatives of the corresponding Poisson tensors 7 € AZsl(n, R)
with rank 7 = n(n — 1) are explicitly given as follows (cf. [1]). We put

T = Y <icj<k<n—t (Eji = 1/n-6ji - In) N Ep—jik1,
7T11 = Elgigjgkgn—l Ek(Eji — l/n . (Sji . In) A Ek—j—i—i,k—i—l;
T2 = Z15i5j§k5n—1(Eij = 1/n-0ij - In) A Egi1,k—jtis
Ty = Di<i<j<k<n—1 Ek(Bij — 1/n i - In) A Eppy p—jti,

where ¢, = 1in case kK # n — 1, and ¢,,_1 = —1. Then, under the adjoint action,
the representatives of the equivalence classes are given by

sl(2,R) 2o, T,

sl(n,R) (n=o0dd >3) : m, 7,

sl(n,R) (n=even >4) : m, 7y, T2, .

In the case of n = 2, the set of solutions of the classical Yang-Baxter equation
[r,7]s = 0 constitutes a quadratic cone in A%sl(2,R) ~ R3, and there are three
Ad SL(2,R)-orbits represented by 71, 7} (= —m) and 0. But for general SL(n,R)
(n > 3), the complete orbit decomposition (= Ad SL(n,R)-classification) of the
solutions of [7,7]s = 0 is unknown.

In the complex case, Stolin [13] classified the solutions of the classical Yang-
Baxter equation for two Lie algebras sl(2,C) and sl(3, C) under the action of the
automorphism groups of sl(n, C). In particular, he showed that the solution with
rank 7 = n(n — 1) is uniquely determined under this equivalence for n = 2, 3. By
complexifing our arguments in the proofs of Proposition 5 and Theorem 3, we can
immediately generalize Stolin’s results to the following form.
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Theorem 6. The solution of the classical Yang-Bazter equation for SL(n,C) with
rank 7 = n(n — 1) is of maximum rank. And it is uniquely determined for n > 2
under the action of the automorphism group of sI(n, C). The representative is given

by

the above .
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