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Abstract

It is known that a 3-dimensional Lie algebra is unimodular or solvable as a result
of the classification. We give a simple proof of this fact, based on a fundamental
identity for 3-dimensional Lie algebras, which was first appeared in [21]. We also
give a representation theoretic meaning of the invariant of 3-dimensional Lie alge-
bras introduced in [15], [22], by calculating the GL(V)-irreducible decomposition of
polynomials on the space A2V* ® V up to degree 3. Typical four covariants nat-
urally appear in this decomposition, and we show that the isomorphism classes of
3-dimensional Lie algebras are completely determined by the GL(V')-invariant con-
cepts in A2V* ® V defined by these four covariants. We also exhibit an explicit
algorithm to distinguish them.

Introduction

In this survey paper, we consider a variety consisting of 3-dimensional Lie algebras from
the representation theoretic viewpoint, and give some perspective to the understanding of
the set of 3-dimensional Lie algebras.

As is well known, the set of Lie algebra structure on a fixed vector space V' constitutes
a GL(V)-invariant algebraic set in A2V* ® V', whose defining equations are the quadratic
polynomials called the Jacobi identity: & [[X,Y],Z] = 0. (The symbol & implies the
cyclic sum.) In general, this algebraic set is not irreducible, and the number of irreducible
components is known for low dimensional cases (cf. [7], [11], [15], [19]).

In the case of dim V = 3, it is decomposed into two irreducible components, one of
which consists of unimodular Lie algebras, and the other of which consists of solvable Lie
algebras. In this paper, we give a simple proof of this fact without using the classification
of Lie algebras, but instead, by showing the fundamental identity

S (Trad X) - [Y, Z] =0,

which is a peculiar phenomenon for 3-dimensional case.
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The second purpose of this paper is to describe the set of 3-dimensional Lie alge-
bras from GL(V)-invariant representation theoretic viewpoint. We first give a GL(V)-
irreducible decomposition of the set of polynomials on A2V* ® V up to degree 3, by using
Littlewood-Richardson’s rule. And next, we show that among the generators of these ir-
reducible components, there exist four fundamental generators (= covariants), by which
we can describe several concepts in a GL(V')-invariant way. For example, we can give a
representation theoretic meaning of the invariant of 3-dimensional Lie algebras introduced
in [15], [22]. And in addition, we can state an algorithm to distinguish the isomorphism
classes of 3-dimensional Lie algebras, including the mutual relation of GL(V)-orbits and
their degenerations, in terms of these four covariants.

Of course, we already know the classification of 3-dimensional Lie algebras, and their
individual structures are well known. But by this GL(V)-invariant viewpoint, we can
obtain a systematic understanding of the set of 3-dimensional Lie algebras, which cannot
be read from a mere classification, constituting a dense forest of mutually unrelated normal
forms. The explicit description of these results are summarized at the end of § 4. We
remark that our viewpoint in this paper is quite effective in considering several GL(V)-
invariant problems in geometry. For other explicit examples, see [4], [5], [6].

Throughout this paper, we assume that Lie algebras and vector spaces are defined over
the field of complex numbers C, unless otherwise stated.

The author is grateful to the referee who carefully read the manuscript and gave valu-
able comments. He is also grateful to Professor Umehara who showed him a preprint [21]
and gave several useful advices on the subject of this paper.

§ 1. Fundamental identity.

We fix a basis X1, --,X, of an n-dimensional vector space V', and consider a skew
symmetric bilinear map [, ] : V x V — V defined by [X;, X;] = Y cf X, (cf; = —c%).

Then, the bilinear map [, | defines a Lie algebra structure on V' if and only if it satisfies
the Jacobi identity

! ! !
!
This implies that the set of Lie algebra structures on V' are defined by quadratic polynomial
relations on c};.
In the case of dim V' = 3, the Jacobi identity has another peculiar expression, from
which the fundamental identity stated in Introduction follows.

Theorem 1. The following identity holds for any [ , | € A*V* @ V where V is a 3-
dimensional vector space.

S [[X1, Xa], X3] = & (Tr adX;) - [ X, Xs].

Proof. We may assume that X, Xy, X5 are linearly independent because both expres-
sions of the above equality reduce to zero in case X, Xy, X3 are linearly dependent. We
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express [X;, X;] = > ¢f; X}, as above. Then, by direct calculations, we can easily show
that both sides of the above equality are equal to

2 1 1 2 3 1 1.3 12 2 1 3 9 2 3
(012023 — CipCa3 + C3Co3 — 013023)X1 + (012013 — CipC13 + Ci3C3 — 013023)X2
1.3 3 1 2 3 3 2
+ (012013 — CipC3 T C1pCo3 — 012023)X3-

But, we give here a representation theoretic proof, using the Schur functions. (For the
definition and the fundamental properties of Schur functions, see [17].) We fix a volume
form w on V throughout. Then, we have a natural isomorphism V — A2V* defined by
X — X|w, and the bilinear map [, | = {c};} may be considered as an element of V ® V
under this isomorphism.

In terms of the above basis of V| both sides of the equality in Theorem 1 are expressed
as quadratic polynomials of cfj, and they are considered as elements of S*(V ® V)*. The
group SL(V) which preserves the volume form w naturally acts on S*(V ® V)*, and in
the case dim V' = 3, from Littlewood-Richardson’s rule, we have the following irreducible
decomposition of S?*(V ® V)*:

S2HVeV) =S (Ve V)
S2(S2V* + A?V)
S*(SPV*) + SPV* @ NPV* 4+ S2(A?VF)
= (S4 + Sz2) + (S31 + Sa11) + Saz
= Sy + 531+ 2 S92 + Son1.

Here, S implies the dual of the irreducible representation space of SL(V') corresponding
to the partition A. (For example, the symbols S; and S, correspond to V* and S?V*,
respectively. Strictly speaking, the dual space V* must be represented as Sy.., 1. But we
use this dual notations for simplicity. For details, see [17], [3].) Since the multiplicity of
So11 in S?2(V ® V)* is one, and the space Syi; is isomorphic to S; as an SL(V)-module,
we have dim Homgrv)(S*(V@V),V)=1. Forc=[, | e A*V*@V =V ® V, we define
two elements ®(c), ¥(c) € V by

S [[X1, Xo], X5 = w(Xy, X, X3)®(c),
G (TI' ad Xl) . [.XQ,X3] = (Xl,XQ,Xg)\I’(C).

Then, we have ®, ¥ € Homg)(S*(V ® V),V), and they must be proportional. The
proportional constant does not depend on a specific [, |, and hence, by considering the
bilinear map defined by

W
W

[XlaXQ] - X25 [X2:X3] = Xla [X3,X1] = 05
we can easily show that this constant is equal to 1. g.e.d.

By this theorem, we obtain the fundamental identity for 3-dimensional Lie algebras:

G} (TI' ad Xl) . [XQ,X3] = 0.
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From this identity, we know that Trad X = 0 for any X € g if dim [g, g] = 3. Hence,
we obtain the following result without the help of the classification of 3-dimensional Lie
algebras. (In the following, we often express the space V as g if a Lie algebra structure on
V' is explicitly or implicitly given.)

Corollary 2. Let g be a 3-dimensional Lie algebra. Then g satisfies Tr ad X =0 for any
X € g, ordim [g,g] < 2. Namely, g is unimodular or solvable in the case dim g = 3.

Remark. (1) The above theorem and corollary hold over any field k of characteristic #
2. As far as the author knows, the above fundamental identity was first appeared in the
(unpublished) paper [21].

(2) In the case of dim V' > 4, in contrast with the case of dim V' = 3, the set of quadratic
polynomials appearing in the Jacobi identity is not irreducible, and constitutes two GL(V)-
irreducible components of S?(A?V*®V)*, whose dimensions are 1/6-n(n—1)(n+1)(n—3)
and 1/2-n(n —1). And hence, the argument in the proof of Theorem 1 does not hold for
dim V > 4. For example, we can easily check that & (Tr ad X;) - [Xs, X3] # 0 for the
4-dimensional Lie algebra defined by

[Xl,XQ] - XQ, [Xl,X3] - X3, [Xl,X4] - 2 X4, [XQ,X3] — X4.

It seems that the fundamental identity of the above type directly related to the Jacobi
identity does not exist in the case dim V' > 4.

Next, we consider the set of 3-dimensional Lie algebras in A2V*® V. We already know
the following result.

Theorem 3 (cf. [7], [11], [15], [19]). The set of 3-dimensional Lie algebra structures on
V' constitutes two irreducible varieties in A2V* @ V', one of which is the closure of the set
of simple Lie algebras and the other of which is the set of solvable Lie algebras.

In the following, we denote these varieties by X, and X4, respectively. They are both
stable under the natural action of GL(V'). Clearly, each GL(V')-orbit in 3, or X
corresponds to an isomorphism class of Lie algebras.

Actually, two cases in Corollary 2 just correspond to two varieties in Theorem 3. The
variety Ygimp i a linear subspace of A?g*®g defined by the condition Tr ad X =0 (X € g),
i.e., Xgimp 1s just the set of unimodular Lie algebras. The defining equation of the variety
Yo 1s given by dim [g, g] < 2, which is a cubic polynomial relation on cfj. It is known
that both varieties are of the same dimension 6.

§ 2. GL(V)-irreducible components of S?(A?V* @ V)*.

As stated above, the set of 3-dimensional Lie algebras is the union of two GL(V)-
invariant irreducible varieties, and hence, their defining equations form G L(V')-invariant
subspaces of the polynomial ring > SP(A2V* ® V)*. In this section, in order to describe
several G L(V)-invariant concepts in ¥, and X, including the representation theoretic
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meaning of their defining equations, we first give a list of irreducible decomposition of
SP(A?V* @ V)* and the generator of each component up to degree 3.

For simplicity, we fix a volume form w of V' as in the proof of Theorem 1, and identify
two spaces A’V*® V and V ® V. Then, as GL(V)-modules, these spaces are isomorphic
to each other by multiplying an invariant of SL(V') corresponding to a suitable power of
det g (¢ € GL(V)). This argument also holds for polynomials on A2V* Q@ V £V Q@ V
for each fixed dgree. In the following, we only consider algebraic concepts determined by
the vanishing (or by the ratio) of these polynomials, and hence, we may use the space
SP(V @ V)* instead of SP(A?V* @ V)*.

The explicit decomposition of SP(V ® V)* is easily obtained by using Littlewood-
Richardson’s rule as in § 1, and the generator of each irreducible component can be cal-
culated by the method stated in [3; p.115 ~ 116]. (By this method, the highest element
in S, automatically appears.) Most generators are expressed as a product of lower degree
generators, and we marked the symbol “x” to the generators that cannot be expressed
as a product form. These marked generators correspond to covariants (or invariants) in
classical invariant theory (cf. [9], [16], [20]). In the following, we express c}; as a matrix
form: ¢;; = cbs, cin = ¢4y, ciz =y (1 =1~ 3).

p=1:52+511

* SQ . C11
* 511 ¢ C12 — €1

p=2: 5,4+ S31 4+ 2 S + Son1

S4 . C?l = S%

NESE 011(012 - 021) = 52511
* 522a ¢ C11C22 — C12C21

522b : (012 - 621)2 = 5%1

* So11 @ C11C23 — C11C32 + C12€31 — C13C21
p=3: 5S¢+ S51+ 2 Ss2+ Sa11 + 2 S35 + 2 Ss01 + 2 Sa20

Se 3, =253
Ss1 0%1(012 —cy) = 522 St
542a . 011(012 - 021)2 =5 5121
542,, : 011(011022 - 012021) =5 522a
San 011(011023 — C11C32 + C12C31 — 013021) = 5o So11
533a : (612 - 021)3 = S%
533b : (612 - 021)(011022 - 012021) = 5'11522,1
Ci1 Ci1 Ca
* 5321a3 C21 Ci12 C22
C31 Ci3 Co3
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5321,,5 (012 - C21)(C11023 — C11C32 + C12C31 — C13021) = S11 Sant
Ci1 Ci2 C13
* 5222a3 Co1 C22 C23
C31 C32 C33
% Sogg, ¢ C11(Caz — c32)? + ca2(cr13 — €31)? + c33(c12 — €21)?
+(c12 — c21)(Ccasca1 — c13¢32) + (ca3 — c32)(C31€12 — C21€13)
+(c31 — c13)(Cr2c23 — C32C21)

Note that the dimension of the irreducible representation space corresponding to the par-
tition {a, b, c} is given by

dim Sgpe = %(a—b—i—l)(a—c—i—?)(b—c—i—l)

in the case dim V = 3. In the following, for each irreducible component S,, we often
express its generator by using the same letter Sy. (If the multiplicity is greater than one,
we distinguish these generators by the symbols S, S,,, etc.)

In viewing the above list, we know that there appear seven fundamental covariants (=
essential generators marked by “x”) up to degree 3. We conjecture that the polynomial ring
> SP(V®V)* is generated by these seven fundamental covariants, namely, each generator
of the component of SP(V ® V)* is expressed as a product of these seven covariants. By
direct calculations, we can show that this conjecture is correct up to degree 8. But it
seems that the complete determination of covariants and their syzygies are hard to solve
as in classical invariant theory, though it is an important and fundamental problem. (For
the spaces S?V, A’V and V @ A?V, we know the complete answer to this problem. (cf.
[1], [2], [8]- See also [4].)) If the above conjecture is correct, all GL(V')-invariant concepts
in the space V@ V (V = C3) can be described by these seven covariants.

We remark that these seven polynomials are not functionally independent on V ® V.
In fact, these generators satisfy the following sextic identity:

So 5121 Sago, + 5311 S99, + 53221a = Sy S92, S292, + S11 So11 S321, -

The space S¢(V ® V)* contains the irreducible components Sgso with multiplicity seven.
But there exist eight generators corresponding to Sgso:

Sy 571 Sa22,, S2 5% S22, Sa2 Saz, So22,, So Saa, S222,,

St S%1, S Sont Saor,s SHi Sz, St
And the difference 8 — 7 = 1 implies the existence of the above sextic identity. This is the
unique non-trivial polynomial relation among seven fundamental covariants because the
rank of the (7,9)-matrix (05\/0c;;) is 6 at a generic point of V' ® V, where Sy are the
fundamental covariants.

§ 3. Four covariants for 3-dimensional Lie algebras.

Now, we impose the condition S3;; = 0 corresponding to the Jacobi identity, i.e.,
we assume that the space V possesses a Lie algebra structure. (The expression Sy = 0
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implies that not only the generator itself, but all polynomials in the space Sy vanish.) In
this section, we give a geometric meaning defined by the fundamental covariants listed in
§ 2. But in advance, we first review a classification of 3-dimensional complex Lie algebras
for later use (cf. [10], [14], [19]).

non-trivial bracket operations

LO = C3
L, = Heisenberg (X1, Xo] = X3
L2 = Clﬁ(l, C) D (j1 [Xl,XQ] = X2

L (X1, Xo] = X, [X1, X5] = X0+ X5
Ly() (X1, Xo] = X, [Xy, X3] = X3
Ls = 5[(2, C) [X1,X2] = X, [X1,X3] = — X3, [X27X3] =X

For the Lie algebra L,(«), it is known that Ly(a) = Ly(¢) if and only if & = o/ or i’ = 1.
In addition, we have L4(0) = Lo, and hence, we may assume |a| > 1. Among them, we
can easily check that Ls(—1) is isomorphic to the complex Euclidean Lie algebra

b
e(2,C) = - c
0

o O
o O

At a first glance, the Lie algebra L3 seems to be isolated from other Lie algebras. But this
appearance is not correct, and it is continuously deformable from the Lie algebra L,(«)
as follows. We define a Lie algebra M («a) by

(X1, Xo] = X, [X1, X3]=Xo+ a X;.

Then, we can easily show that

L4(Oj) (CE 7é 0: 1)
M(a)= 4§ Ly (a=0)
L3 (O{ = ].)

which implies that the Lie algebra Ls is adjacent to Ls(«) in spite of its appearance.

Now, for each Lie algebra g, we substitute the value cfj to seven fundamental covariants
listed in § 2, where cfj is the structure constant with respect to a generic basis of g. Then,
it follows that the equalities

5211 = 8321(1 = 52221, =0

hold for any 3-dimensional Lie algebra, and hence there remain four fundamental covariants
Sa, 511, S92, and Sagg,. The value for these covariants are summarized in the following
table. (We assume that the complex number « satisfies |o| > 1, @ # £1.)
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So Su Sm Sm. | Grovyens
Ly 0 0 0 0 0
L * 0 0 0 3
Lo * * 0 0 )
Ls * * * 0 )
Ly(«) k% * 0 5
L,(1) 0 =x * 0 3
Ly(-1)| = 0 * 0 5
Ls * 0 * * 6

Here, the symbol “0” implies that the generator S, vanishes with respect to any basis of
g, and the symbol “¢” implies that S does not vanish for a generic basis. (In this table,
we also exhibit the dimension of each GL(V')-orbit.)

We summarize the GL(V')-invariant concepts defined by these covariants as follows.
(As stated before, we express V' as g.)

Proposition 4. (1) The condition Sy = 0 implies that there erists ¢ € g* such that
(X, Y] = o(X)Y — p(Y)X. These Lie algebras constitute a 3-dimensional linear subspace
contained in the variety Yo, -

(2) The condition S1; = 0 implies that g is unimodular, and this is the defining equation
of the variety Xgimp. (We remark that the condition S1; = 0 automatically implies So11 = 0.
Of course, combined linear conditions Sy = S11 = 0 imply that g is abelian.)

(3) The condition Sy, = 0 holds if and only if dim [g, g] < 1.

(4) The condition Sse, = 0 holds if and only if dim [g, g] < 2, and this condition is
also equivalent to the solvability of g. In particular, the defining equations of Xso, are
given by 5211 = SQQQa =0.

(5) Nilpotent Lie algebras are characterized by two conditions S1; = S, = 0, i.e., a
3-dimensional Lie algebra g is nilpotent if and only if it is unimodular and dim [g, g] < 1.
(Actually, it is 2-step nilpotent.)

Proof. The results in (1) and (2) follow immediately from the explicit irreducible
decomposition (V ® V)* = Sy @ S1;. The statements in (3) and (4) follow from the
fact that Sgo, and Sago, are the principal minor and the determinant of the matrix (c;;),
respectively (cf. [1], [2]). The result (5) can be easily obtained by using the classification
stated above. q.e.d.

The explicit description of the GL(V)-invariant varieties determined by these condi-
tions will be described in detail in the next section.

§ 4. Varieties of 3-dimensional Lie algebras.

In this section, we study GL(V)-invariant varieties consisting of 3-dimensionl Lie al-
gebras and the orbit structures of them, in terms of four fundamental covariants listed up
in § 3.
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In the following, we denote by O(Ly) the GL(V)-orbit of the Lie algebra Ly, and by
O(Ly) its Zariski closure. The orbit decompositions in the following proposition are more
or less well known for many Lie algebraists. But, these decompositions are easily proved
by using the results stated in the previous sections. For example, we have L,(1) ¢ O(Ls)
because Sy, # 0 for Ls(1). (Remind that the defining equations of ¥, and ¥, are
S11 = 0 and Sp11 = Sage, = 0, respectively. The dimension of each orbit is stated in § 3.)

Proposition 5. (1) The varieties Lsimp and Xso are the union of the following GL(V)-
orbits:

Seimp = O(Ls) UO(La(—1)) UO(L1) UO(Ly),
Yoo = UaO(La(@)) UO(Ly) UO(Ls) UO(L) UO(Lo) (la] > 1).
U

And hence, we have Xy N Egory = O(Lg(—1)) U O(L1) U O(Ly).
(2) The GL(V)-orbit decompositions of O(Ly) are given by

O(Lo)  =0(Lo) =A{0},

O(L1) = O(L1) U O(Ly),

O(Ly) = O(Ly) U O(Ly) UO(Ly),

O(L3) = O(L3) UO(L4(1)) UO(L1) UO(Ly),

O(Ls(e)) = O(La(a)) UO(L1) UO(Lo), (laf =1, # +1),
O(L4(1)) = 0O(La(1)) U O(Lo),

O(L4(_1)) = O(L4(_1)) U O(Ll) U O(LO) = Esimp N Esolv:
O(Ls) = O(L5) UO(Ly(—1)) UO(L1) UO(Ly) = Esimp-

A generic element of ¥, is represented by Ls (= sl(2, C)) and the Lie algebras Ls(—1),
Ly, Ly are degenerations of Ls. (For the concept “degeneration”, see [12], [19].) These
Lie algebras are distinguished in X, by the rank of the matrix (c;;), as stated in [15].
The other variety X;q, does not admit a dense orbit, in contrast with X,,, and it
mainly consists of infinite family of 5-dimensional orbits, which implies the existence of a
1-dimensional moduli space. (Remind that dim X;,,, = dim ¥, = 6.)

Concerning this moduli space, an invariant x(g) € C U {oo} was introduced in the
papers [15], [22]. (In the following, we mainly use the notation in [22]. The invariant .J
defined in [15] is related to x(g) in [22] by the equality x(g) = 2/(1 — J).) This invariant
is quite useful in classifying 3-dimensional Lie algebras in ¥, and roughly speaking, it
gives a coordinate of the above moduli space. In our viewpoint, this invariant y(g) can be
expressed as the ratio of two covariants belonging to the same partition {22}:

2 2
. 522,, . St . (012 - 021)
522a 522a C11C22 — C12C21

(%) x(g)

This invariant is well-defined for all 3-dimensional Lie algebras except nilpotent ones (=
Ly and L; ). (Remind that nilpotent Lie algebras are characterized by two conditions
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S11 = Sa, = 0.) We can easily show that the value at the right end of (x) does not
depend on the choice of a basis of g. And hence in case ci1o — co1 = €11€02 — ¢12¢21 = 0
for some basis, we have only to change it such that x(g) has a definite value in order to
calculate x(g). Of course, we can also calculate this invariant by using the definition
J_Tr(adX)2_1 2
T (madX? T X(o)

in [15], which is independent of the choice of generic X € g. Essentially, the invariant
X(g) is determined by the ratio of two non-zero eigenvalues of ad X. In fact, denoting the
eigenvalues of ad X by 0, «, 3, we have the equality

B«
=—4+—-+2.
x(g) a3t
The explicit value of x(g) for each Lie algebra is given as follows:

x(g)
L2 o
Ls 4
Li(a) (at1)?
Ly 0

As we listed in § 3, there are three types of 5-dimensional GL(V)-orbits in 3y, :
O(Ls), O(L3) and O(L4()) (Jo| > 1, # 1). For these Lie algebras, we have the following
proposition, indicating that the invariant x(g) serves as a coordinate of the moduli space
of these Lie algebras. This proposition is almost equivalent to Theorem in [21], or the
normal form stated in [15; p.23] and [22; Theorem 2], though the unimodular Lie algebra
L,(—1) is excluded there.

Proposition 6. Let g and g’ be two elements of O(L2)UO(L3)UO(Ly(r)) (Joof > 1, v # 1)
= Ysoto \O(L4(1))UO(L1)UO(Ly). Then, g is isomorphic to g if and only if x(g) = x(g')-

This proposition follows immediately from the fact that the condition (o +1)?/a = (o' +
1)?/a’ is equivalent to o = o' or aa’ = 1. (We remark that x(Ls) = x(L4(1)) and the
invariant x(g) does not distinguish two Lie algebras L3 and L,(1).)

The set of Lie algebras appearing in this proposition is dense in Y., and the remaining
Lie algebras L,(1), L; and Lg in X, are the degenerations of them.

It should be noted that in terms of this invariant x(g), Lie algebras in O(Ly) UO(L3)U
O(Ls(@)) (o] > 1, @ # £1) = B \ O(La(F1)) UO(L1) U O(Lyg) are expressed as

1
x(9)

for a suitable basis e; of g, as stated in [22]. (The sign of [es, €3] in [22; Theorem 2] should
be corrected to the above form, as Professor Umehara kindly teach this fact to the author.)

[ela 62] = 0’ [62’ 63] = €1, [63: 61] = —€1 + €9
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Combining these results, we can give a simple description of the set of 3-dimensional
Lie algebras from GL(V)-invariant viewpoint as follows: The variety Y4, is the closure
of the family of 5-dimensional GL(V)-orbits, which are continuously deformable to each
other. Any two closures of these orbits have a common intersection O(L1) = O(L;)UO(Ly).
Among these 5-dimensional orbits, O(L3) has a special feature, containing an exceptional
orbit O(L4(1)) in its closure. Another exceptional 5-dimensional orbit is O(L4(—1)), which
is contained in the other variety ¥4;,. Actually, the intersection X, N0 just coincides
with the closure O(L4(—1)), as stated in Proposition 5.

Finally, summarizing these results, we give an algorithm to determine the isomorphism
classes of 3-dimensional Lie algebras, which is quite useful in actual determination:

START
)
abel L LO — C3
N
dim [g, g] = 3 Y Ly =s1(2,C)
N
% =0 = (1)
N
X(Clnlrlln[igl;f)]d;];r L) L, = Heisenberg
N
x(g) =o0 —  Ly=dff(1,C)® C'
x(g) =4 — Ly
X(g) =0 N L4(—1) _ 2(2’ C)
x(@) =(@+1)%a —  Lia) (lo|>1,a#+1)

Remind that the condition Sy = 0 is equivalent to [X, Y] = p(X)Y — ¢(Y)X for some ¢ €
g*, which is also equivalent to the condition ¢;; + ¢ = 0 (i.e., Lie algebras corresponding
to £ in [22]).

Viewing this algorithm, we once more emphasize that all isomorphism classes are com-
pletely characterized in terms of four covariants Sy, S11, Sog, and Saogo,. We may say that
these covariants (including the invariant x(g) = S%/So,) serve as a complete measure
in describing the structure of 3-dimensional Lie algebras, which shows the effectiveness of
our GL(V)-invariant viewpoint stated in Introduction.

§ 5. Final remarks.

(1) As stated in the previous sections, two varieties Y;m, and X,p, admit their own
defining equations in addition to the Jacobi identity. This fact implies that the quadratic
polynomials corresponding to the Jacobi identity essentially contain another higher or
curiously lower degree polynomial relations in an implicit form. And such a phenomenon
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usually occurs in multi-tensor spaces (cf. [4], [5]). For 3-dimensional Lie algebras, this
phenomenon follows from the identity in Theorem 1. But for higher dimensional cases, it
seems that such a fundamental identity does not exist, and it is desirable to investigate
another method to explain such a phenomenon.

(2) In the 3-dimensional case, four covariants are sufficient to describe Lie algebra
structures on V. To apply our method to higher dimensional cases, we must know the
GL(V)-irreducible decomposition of the polynomial ring Y. SP(A?V* ® V)* at first. But
this is a quite difficult problem in representation theory, related to “plethysm” and “3-
tensor spaces”. (As for the concept “plethysm”, see [17]. The space A’V* ® V may
be considered as a 3-tensor space because V' and V* symbolically appear three times in
N?V*®V. See [4].) For example, in the 4-dimensional case, we know by direct calculations
that the numbers of fundamental covariants in SP(A?V* @ V)* (p = 1 ~ 4) are given by 2,
5, 14 and 28, respectively (cf. [6]). For sufficiently high dimensional case, these numbers
become 2, 7, 40 and 255, respectively, and it seems almost impossible to obtain a formula
for general p. We may say that we are just encountering the usual difficulty peculiar to
classical invariant theory.
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