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Abstract

We give simple decomposition formulas of two plethysms {AB} ® {2}, {AB} ® {1%}
and the tensor square {AB}?, where {AB} is a partition with depth< 2. As its
corollary, we express the number of irreducible components of these plethysms and
{AB}? as polynomials of A and B, or in the form of generating functions. As
another corollary, the condition that the GL(N, C)-irreducible space corresponding
to {AB} admits a quadratic invariant is obtained. We also state conjectures on the
decomposition of some tensor products in terms of generating functions.

1. Introduction

In the previous paper [3], we gave new decomposition formulas of the plethysms {m} ®
{p} with |u| = 3 (m > 0). In this paper we give similar formulas for another type of
plethysms {AB} ® {2} and {AB} ® {1?} (A > B > 0), i.e., the symmetric and anti-
symmetric part of the tensor square {AB}?. As for these plethysms, the decomposition
formulas are already obtained in the excellent paper [4]. But the final expression in [4]
is divided into several cases and is marvelously complicated (see Theorem 5 in Section 3
of this paper). In fact, to obtain the total decomposition of {AB} ® {u} (|u| = 2) based
on this formula, we must determine the coefficient of the partition {\,---, A4} for each
M+ oo+ M =2(A+ B) with Ay > --- > )y > 0, which requires much labor as indicated
in Theorem 5.
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In the present paper we give two types of decomposition formulas of {AB} ® {u}
(|| = 2), as in the case of the previous paper [3]. In the first formula, each component
of {AB} ® {u} is expressed as a linear combination of six basic partitions with some
restrictions on the coefficients (Theorem 1). This formula means that each component of
{AB} ® {u1} represents a lattice point in a 4-dimensional polytope, which enables us to
express the number of irreducible components of { AB}®{u} (|¢| = 2) as a polynomial of A
and B (Corollary 2). The second formula is expressed in the form of generating functions.
By this formula, the total decomposition data of { AB}®{u} for all A > B > 0 is condensed
in one relatively simple generating function, containing no redundant terms (Corollary 3).
And by expanding this generating function, we can easily obtain the full decomposition of
{AB} ® {1} without any combinatorial argument nor any case by case check. In addition,
by adding the formulas of {AB} ® {2} and {AB} ® {1?}, we obtain a decomposition
formula of the tensor square {AB}? because {AB}? = {AB} ® {2} + {AB} ® {1?}. For
example, the number of irreducible components of {AB}? is equal to the coefficient of
¢“r? in the following generating function:

1+ ¢?r
(1—9)%(1 —qr)3(1 — ¢?r)

=1+2¢+3¢°+3qr +4¢> +8¢°r +-+---- .

(The number of irreducible components of {21}? is actually 8.) It seems difficult to obtain
such a formula by using Littlewood-Richardson rule only. As another corollary of Theorem
1, we can quite easily obtain a necessary and sufficient condition that the GL(N, C)-
irreducible space corresponding to the partition {AB} admits a quadratic GL(N, C)-
invariant (Corollary 4).

It is surprising that the combinatorial data on {AB}? which is usually obtained by
Littlewood-Richardson rule is finally summarized in a simple rational function. As a
generalization of this fact, in the last section of this paper, we state some conjectures
on the decomposition of the tensor square {ABC}? (A > B > C > 0) and the tensor
product {A;, Ay, -+, A }{n}, which are obtained by using computers. Combined with
the previous results in [3], the author believes that “generating functions” are the most
natural language to describe decomposition formulas of plethysms and tensor products. It
is sure that there exist general decomposition formulas for a wider class of plethysms or
tensor products, and as our next problem we must capture its explicit form in a unified
manner.

2. Main results

In this section, we state the main results of this paper, and summarize several facts
obtained immediately from them. The first theorem asserts that each component of
{AB} ® {p} with |u| = 2 can be expressed as a linear combination of six basic parti-
tions.
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Theorem 1. The following decomposition formulas hold:

{AB}® {2} =
> a(2,0,0,0) + b(1,1,0,0) + ¢(2,2,0,0)
at+b+d=A-B —|—d(2,2,2,0)+e(2,1,1,0)—|—f(1,1,1,1)] ,
c+d+e+f=B
a’b7c’d7e’f20

(b,e) # (0,0dd), (odd,0)

{AB} @ {1?} =
3 [a(2,0,0,0)+b(1,1,0,0)+c(2,2,0,0)
atbtd=A-5 +d(2,2,2,0)+e(2,1,1,0) + £(1,1,1,1)
ct+d+e+ f=B
a,bc,d,e, f >0

(b,e) # (0,even), (even,0)

In this theorem, the expression a(2,0,0,0) + b(1,1,0,0) + ¢(2,2,0,0) + d(2,2,2,0) +
e(2,1,1,0) + f(1,1,1,1) means the partition {2a + b+ 2c+2d+2e+ f,b+2c+2d+ e+
f,2d+e+ f, f}. The proof of this theorem will be given in Section 3. By this theorem, we
can quite easily calculate the decomposition of {AB} ® {2} and {AB} ® {1%} as follows.

Ezample. (1) {32} ® {2}: Non-negative integers satisfying the conditions a + b+ d =
3—2=1,c+d+e+ f=2and (be)# (0,0dd), (odd, 0) are exhausted by
(a7 b7 c7 d7 e’ f) = (1’ 07 27 07 07 0)7 (]‘7 O’ 07 07 25 0)’ (05 ]'7 17 07 17 0)7 (07 ]‘5 07 07 27 0)5
(1,0,1,0,0,1), (0,0,1,1,0,0), (0,1,0,0,1,1), (1,0,0,0,0, 2),
(0,0,0,1,0,1).

Hence by applying the above theorem, we have
{32} ® {2} = {64} + {62%} + {541} + {532} + {5317} + {42} + {4321} + {42°} + {3°1}.
(2) If we put B = 0, then we have
Aey= Y [ a(2,0) + b(1,1)
a+b=A

a,b>0
b = even

{24} +{24-2,2} + {24 - 4,4} +------ :
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fare{t= Y [a@0)+b(11)
a+b=A
a,b>0
b= odd

={2A-1,1} + {24 -3,3} + {2A - 5,5} +------ .

These formulas are classically well-known (cf. [7; p.332]).

The parameters a ~ f in these formulas move in a 4-dimensional polytope, and after
some cumbersome calculations we can count the number of lattice points in it which satisfy
the additional condition on (b, e) stated in Theorem 1. As a result, we obtain the following
corollary.

Corollary 2. The number of irreducible components of {AB} @ {u} with |u| = 2 is
given as follows. First, put

1 1
'ﬁB(B+1)(B+2)(4A—5B—5) + A+ 1)(B+1)(B+2)
if A>2B>0,
Kip=11
57(A=B)(A=B+1)(A=B+2)(4-5B8-5)
{ +%(B+1)(B+2)(A—B+1)2 if 2B > A> B > 0.

Then we have

Kup A # B (mod 2),
{AB}®{2} : {Kap+5(B+2) A=B=0(mod?2),
Kip+ +(B+1) A=B=1(mod?2),

Kag A # B (mod 2),
{AB}® {1?} : { Kup— +(B+2) A= B=0(mod?2),
(B+1) A= B=1(mod?2).

In particular, the number of irreducible components of the tensor square {AB}? is equal
to 2K op in any case.

As another corollary of Theorem 1, we can express the decomposition formulas of
{AB} @ {p} (Jp¢| = 2) in the form of generating functions as follows.

Corollary 3. The coefficient of z*y'z™qr? in the following formal power series is
equal to the coefficient of {2(A+ B) — (k + 1+ m),k,l,m} in the plethysms {AB} @ {2}
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and {AB} ® {12}, respectively.

1+ 2%yq*r + 2ygdr + 23y%¢3r?

(1= q)(1 —22¢*)(1 — 2%qr)(1 — zyzqr)(1 — 22y%¢*r) (1 — 2%y°¢*r?)’

xq(1 + yr + zyqr + 23y%¢*r?)

(1—q)(1 —22¢?) (1 — 2%qr)(1 — 2yzqr)(1 — 22y?¢?r)(1 — 22y?q*r?)’

We denote the numerators of the above generating functions as f(z,y,q,r) and g(z,y, q,7),
respectively. Then these two polynomials are related by the equality

11 1 1
g(.’L’, Y, 4, T) = .’L'4y2q47'2f <_a Ty T _) .
x y q’r
In addition, by adding these two generating functions, we obtain the generating function
corresponding to the tensor square { AB}?:

1+ z%yq’r
(1—q)(1 — zq)(1 — 22¢r)(1 — zygr)(1 — zyzqr)(1 — 22y%¢*r)’

Namely, the coefficient of z*y'2™¢4r? in this formal power series is equal to the coefficient

of {2(A+ B) — (k+1+m),k,l,m} in {AB}?. Tt is surprising that the totality of com-
binatorial arguments in carrying out Littlewood-Richardson rule for all {AB}? is finally
summarized in this relatively simple rational function.

Ezample. We expand the above generating function of {AB} ® {2}. Then it is equal
to

T+q+ (1 +2°)¢ + (2 + 2y2)qr + (1 + 2)¢® + (2° + 2%y + zyz + 2°y%)¢°r
+ (14 2% + 2b)g* + (2 + 2%y + zwyz + 2t + 23y + 2%% + 23y2)¢Pr
+ (z* + 2%y° + 2Pyz + 2?2+ -
Hence, for example, taking the coefficients of ¢®r, we have the decomposition

{31} ® {2} = {62} + {521} + {51} + {4%} + {431} + {42%} + {3%1?}.

Proof. The partition a(2,0,0,0)+b(1,1,0,0) 4+ ¢(2,2,0,0) +d(2,2,2,0) +e(2,1,1,0) +
f(1,1,1,1) ={2a+b+2c+2d+2e+ f,b+2c+2d+e+ f,2d+e+ f, f} corresponds to the
monomial pbT2et2dretfy2dietff — g (32)¢(124?)4(xy)®(ayz)’. Since a+b+d = A— B and
c+d+e+ f = B, we have a+b+c+2d+e+ f = A, which implies that b+c+2d+e+ f < A.
Now we first consider the sum

> > ot (22)°(2?y?) (wy)“(wy2) g*r P,
AB2>20 btct+2dtet+f<A
c+d+e+f=B
b,c,d,e, f >0
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dropping the condition on the pair (b, e). This formal power series is equal to

> > 2 (2%)(a*y*) (wy) (wyz)! g*r®
AB>0 ptc+2d+e+f+k=A
ctd+e+f=B
b,c,d,e, f, k>0

— Z xb(m2)c($2y2)d(my)e(xyz)fqb+c+2d+e+f+ch+d+e+f
b7c’d7e7f7k Z O

= > q* (zq)"(z%qr)(z?y*¢*r) (zyqr)®(zyzqr)’.
b’c,d7e’f’k 2 O

And it is easy to see that this power series is equal to

1
(1 —q)(1 —zq)(1 — 22gr)(1 — 22y?¢?r)(1 — zyqr)(1 — zyzqr)

To obtain the generating function of {AB} ® {2}, we must subtract two formal power
series satisfying the additional condition (b,e) = (0,0dd) and (b,e) = (odd,0). And by
the same method as above, we can easily show that they are given by

xyqr
(1—¢q)(1 —22qr)(1 — 22y?¢%r)(1 — 22y2¢?*r?)(1 — zyzqr)’
zq
(1—-¢q)(1—22¢®)(1 — 2%qr)(1 — 22y2¢r)(1 — zyzqr)’

respectively. Subtracting these two formal power series from the above, we obtain the
desired result for {AB} ® {2}.

In the similar way, we can prove the formula for {AB} ® {12}. Note that in this
case, after subtracting two formal power series satisfying the additional condition (b, e) =
(0,even) and (b,e) = (even,0), we must finally add the series corresponding to the case
(b,e) = (0,0). q.e.d.

From the construction, it is clear that monomials z*y'2™¢4r? appearing in the gen-
erating functions in Corollary 3 always satisfy the inequality 2(A + B) — (k + 1+ m) >
k > 1> m > 0. Hence by substituting x = y = 2z = 1 to these functions, we obtain
generating functions possessing the number of irreducible components of {AB} ® {2} and
{AB} ® {1?} as a coefficient of ¢*r5:

14+ ¢%r + ¢®r + ¢*r?
(1-g)(1—¢)(1 —qr)*(1 —¢?r)(1 — ¢*r?)’

q(1 + 71+ qr + ¢*r?)
(1-g)(1—¢*)(1—gr)*(1 —¢®r)(1 —g¢*r?)

{AB} ® {2} :

{AB} ® {17} :
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By adding these two functions, we obtain the generating function corresponding to {AB}?:
1+ ¢°r

(1—¢)*(1 —qr)*(1 - ¢°r)
=142¢+3¢°+3qr +4¢* + 8¢*r +5¢* +--- - - - .

For example, the number of irreducible components of {21}? is 8, which just coincides
with the coefficient of ¢?r in this generating function.

It is well-known that there is a one-to-one correspondence between the set of polyno-
mial representations of GL(N, C) and the set of partitions with depth< N. Under this
correspondence, the plethysm {AB} ® {2} represents the space of quadratic polynomials
on the GL(N, C)-irreducible space corresponding to the partition {AB}, which we denote
by Vap hereafter. Hence, by using Theorem 1, we can easily determine the case where the
space Vyp possesses a quadratic GL(N, C)-invariant (N > 2).

Corollary 4. The space Vap admits a quadratic GL(N, C)-invariant if and only if
N <4 and
A=B(mod2) if N=2,
A=2B if N =3,
A=B if N =4.

For each case, a quadratic tnvariant exists uniquely up to constant.

Proof. In case N = 2, the partition a(2,0,0,0)+5b(1,1,0,0)+¢(2,2,0,0)+d(2,2,2,0)+
e(2,1,1,0) + f(1,1,1,1) represents a GL(2, C)-invariant of Vg if and only ifa =d = e =
f = 0. Hence from the conditions on a ~ f stated in Theorem 1, we have b = A — B,
¢ = B and b = even. This condition is equivalent to A = B (mod 2), and in this case the
values of b and ¢ are uniquely determined from A and B.

For the remaining cases N = 3 and 4, we can similarly prove the above fact. q.e.d.

3. Proof of Theorem 1

In this section we give a proof of Theorem 1. Our proof essentially depends on the
results in [4], and we first summarize their results on the decompositions of {AB}?, {AB}®
{2} and {AB} ® {1%} under our notations.

Theorem 5 (cf. [4; p.168~169, 176]). (1) We express the tensor square {AB}? as
Z)\d)\{/\b”' ,/\4} (AZBZ 0, )\1 Z Z /\4 ZO, /\1++/\4:2(A+B)) Ifd,\;éO,
then the inequalities \y > A > A3 and Ay > B > Ay hold. In addition, the multiplicity d)
s given by
(i) In case Ay > Ao > A>A3> B> )\ :

AL — X +1 (24> A1+ Ag),
d)\: 2A—/\2—/\3+1 ()\1+)\3>2AZ/\2+)\3),
0 ()\2+)\3>2A)
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(i) In case \y > A> X > A3 > B> )\ :

0 (2A > A + Xg),
b= M4d—2441 (+d>24> X\ +X),
Ao — A3 +1 ()\1+)\3>2A)

(iii) In case \y > Ao > A> B> X3 > Ay :

M= A1 (2A> A+ 23> Ao+ Ay > A+ B),
2A—)\2—/\3+1 ()\1+)\3>2A2/\2+/\32A+B),

dy = A+ A3 —2B+1 (A+B>/\2+)\322B2)\2+/\4),
A—A+1 (A+B>/\2+)\32/\2+A4>2B),
0 (A2 + A3 > 2A0r 2B > X\ + A3).

(iv) In case \y > A> X > B> X3 > Ay :

0 (2B > X+ A3),
d)\: )\2+/\3—2B+1 (A2+A322B2A2+)\4),
A3 — N+ 1 (A2+A4>2B)

(2) We put {AB}@{2} = ¥, A, -+ A} and {AB}® {12} = ¥, a{d, -+ . A}
Then in terms of the above dy, the multiplicities uy and vy are given by

[ 2dy (dy =0 (mod 2)),

pr=14 3 +1) (=1, Ay =--- =) (mod 2)),
| 5(dy—1) (otherwise),
( %d)\ (d)\ =0 (mod 2)),

vy =« %(d)\—l) (d)\El, )\15---5/\4 (mon)),
| 5(dy+1) (otherwise).

(We correct some misprints in [4]. As for the cases (iii) and (iv) in (1), it is easy to see
that the result in [4] can be simplified to the above form. For example, under the notation
in [4], the expression x4 = min (@ — A1, A3 — Ay, Ay — b) in Theorem 2 [4; p.169] should be
corrected to 4 = min (a — A\, A3 — a, Ay — b) as indicated in Table 2 ([4; p.169]). And
since (Mq—b)—(a—A)=M+M—a—-b=a+b— D=3 =(a— X))+ (b—)A3) >0,
we may drop the term Ay — b in the above expression of x4. In addition, the condition
T4 > Y4 is equivalent to Ay + A3 > 2a, which is also equivalent to 2b > A\; + A4 because
A1+ -+ + Ay = 2a + 2b. In our notation, this condition is expressed as Ay + A3 > 2B.)

Proof of Theorem 1. We first consider the case {AB} ® {2}. We fix A, B, A\ ~ A4,
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and count the number of (a,--- , f) satisfying the following conditions:

a(2,0,0,0) +---+ f(1,1,1,1) = (A1, -+ , M),
a+b+d=A-— B,

ct+d+e+ f=B,

a,b,c,d,e, f >0,

(b,e) # (0,0dd), (odd,0).

Then it is easy to see that these conditions are equivalent to

1
CL:A—g()\Q-i-)\g-i-b),

1
C = E(AQ_)\:;_Z)),

1
d:5(A2+)\3—b)—B,
e=A+ )\ — 24+,
f:)\4a

and

max {2A - )\1 - )\3,0} S b S min {/\2 - )\3,)\2 + /\3 — 23,214 - )\2 — )\3},
b= A+ A3 (mod 2),
(b, A1 + A3 — 24+ b) # (0, 0dd), (0dd,0).

(Note that we often use the equality A\; + -+ + Ay = 2(A + B).) Hence we have only
to count the number of b satisfying the last three conditions on b for each case (i)~(iv)
in (1) of Theorem 5. For this purpose, we first count the number of b satisfying the
conditions max {214 — /\1 — )\3, 0} S b S min {)\2 - )\3, )\2 + )\3 — ZB, 2A — )\2 - )\3} and
b = A+ A3 (mod 2). And next, subtract 1 from this value in case A\; # A3 (mod 2)
and b = 0 or 2A — A\; — )3 is contained in the above interval. (Note that the inequality
A1+ A3 > 2A or 2A > A\ + A3 must hold according as b = 0 or 24 — A; — A3.) Combining
with the condition b = Ay + A3 (mod 2), it is easy to see that this condition is equivalent to
A1 Z Ay = A3 (mod2) in case A\; + A3 > 24 and A} = Ay Z A3 (mod2) in case 24 > A\ + 3.
(In case A; + A3 = 2A, we have A\; = A3 (mod 2) and we need not subtract 1.)

Now consider the case (i) in (1) of Theorem 5. In this case, we have 24 — Ay —
A3 < dg— A3 < Ay + A3 — 2B. Hence, if 2A > A\ + A3, then b moves in the interval
2A — A — A3 < b<2A— )y — A3. We consider the following eight cases according as the
parity of Ay ~ A;. (Note that A\; +---+ Ay =even and (24 — Ay — A3) — (24 — A\ — A3)
= A — Xo. In the following table 0, 1 means that it is even or odd, except the right
column.)
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)\1 )\2 )\3 )\4 b| 24— )\1 — )\3 2A — )\2 — )\3 number of b
1 1 1 110 0 0 (A —A) +1
1 1 0 011 1 1 {3 =) +1} -1
1 0 1 0|1 0 1 (M= A+ 1)
1 0 0 110 1 0 (M= A+ 1)
0 1 1 00 1 0 A=A +1)
0 1 0 11 0 1 (M =X+ 1)
0 0 1 1|1 1 1 {Z(M =) +1} -1
0 0 0 010 0 0 (A =) +1

In this case we have dy = A\ — Ay + 1, and from Theorem 5 (2), we know that the value
1 just coincides with the number of b in the above table for each case.

Next, consider the case Ay + A3 > 2A > Xy + A3. In this case b moves in the interval
0<b<2A— )X — )3, and we have the following table:

)\1 )\2 )\3 )\4 b| 24— )\2 — /\3 number of b

1 1 1 110 0 A— 2(A2+A3)+1

1 1 0 011 1 A— Qo+ X3—1)

1 0 1 0|1 1 A— Qo+ A1)

1 0 0 110 0 EA %(A2+A3)+1i—1
0 1 1 010 0 A= SN+ X)) +1} -1
0 1 0 1|1 1 A-—L(e+2-1)

0 0 1 1|1 1 A-—L(e+2-1)

0 0 0 010 0 A— LN+ A3)+1

In this case we have d) = 2A — Ay — A3 + 1, and for each case the value u, just coincides
with the number of b.

If Ay + A3 > 2A, then we have b < min{\y — A3, A\ + A\3 —2B,24 — Xy — A3} < 0. And
such b > 0 does not exist. Hence the multiplicity p, must be 0, and thus we complete the
proof for the case (i).

In a similar way we can continue to check for the remaining cases (ii)~(iv), and we
leave its examination to the readers. The proof for {AB} ® {1?} can be done completely
in the same way. q.e.d.

4. Conjectures on the decompositions of some tensor products

In view of the results in [3] and of this paper, it seems that the combinatorial arguments
such as Littlewood-Richardson rule or decomposition formulas of plethysms are naturally
summarized in the form of generating functions. Or more strongly, we may say that
generating functions are the most natural language in expressing these decomposition
formulas.
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In this section, as such examples, we state some conjectures on two tensor products.
We first consider the tensor square of type {ABC}? (A > B > C > 0). Gathering the
data on {ABC}? which we obtained by computers, we arrive at the following conjecture.
This formula may be considered as a natural generalization of {AB}?, which we stated in
Section 2. In fact if we put s = 0 in the following formula, we once obtain the formula of
{AB}? stated in Section 2.

Conjecture 1. The coefficient of zFy'z™wiu/qArBsC in the following formal power

series is equal to the coefficient of {2(A+ B+ C)— (k+1+m+i+j),k,1,m,i,j} in the
tensor square {ABC}?* (A> B >C >0):

numerator = h(zx,y, z,w,q,r,s)
= 14 ¢ra®y + Pra*yz{—*r’a®y* 2 — ¢*ria®y? (xy + 2w + yzw + yz + 2)
— r2®yP(w+ 1) + gray(zy — 2 + yzw + yw + 2w + 2 — w) + ry(zw + T + 2w)
+y+w}s + @riz'y? 2 {g Py 2 (aw? 4+ 22w + 1 — 2w) + ¢yt (w + 1)
+ @3y w(zy + yzw + 2) + Eria?y? (syw + vy — z2w? — 22w — Y2 — 20°
+ 2w+ 2z) + q3m2y2w - q2r2xy(:v2yw — 2?w + a:yzw2 + Yz + :Eyw2 + 2z2w?
+ 2zzw + 2w® + y2tw + yaw — 2w) — ¢Cra(zy’w + xy? + zyw® + vy + 2w’
+ v 2w + y*w + 2yzw + yz — yw) — qriryw(z + zw + 2) — qr(ryzw + Sryw
+ zy — z2w? + yzw® + 2w) — qw + w}s® + ¢°riabyt A {—¢'r' Pyt rw(w? + w + 1)
+ ¢* 33y 2 (—zyw? — zyw + zy + 2w + y2w? + yaw) — ¢*ricdytaw + Arictytaw?

+ ¢*r*r?yPu(—r*yw — 2%y + 2?2w® + 2w + 22w + 2Pw + Tyzw + 22Y2 + 227w
+12° + z2w® + yzQw + ZQw) + q3r2x2y2w(—xy2 + 2zyzw + TYz + TYW + TY — TZW
+ 2w + 2w? + Y’z + yzw — yz) + ¢riz*yiaw(zy + 2w? + zw + yow + yw + 2w

+w)+ q2r2xy(x2y2w2 + x2y2w — x2yw3 + x2yw2 + x2yw + 2?w? + nyzw + :Ey2z

2

+ zy’w? + ry2w® + Teyzw® + zyzw + ayw? — r2w® + zzw® + y 22w + yPzw
—y2?w? — yzw) + ¢royw(zy® + zw + yz) — griz’y?zw? + grizyw(—ryzw + 2zyw
+ zy — z2w? — zw? + y2? + yrw® — yzw + 2yz — 22w) — grw(ziyw — 2*w

— zy?z — 2zy% + 2y2w? 4 2zy2w + yw? + TYw + T2w + yizw + yiz — Yz)

— rw(zyw + zw + yz + 2w* + 2w) — w(y + w)}s* + ¢ r'2¥ Yy’ w{g r’ 2 y* P w?

— ¢*r*rtyz(zy + swd 4+ yzw? + 22w + 2w?) — ¢* 30332 (zy + zw? + y2w)

— @PricdyP aw(zyw + 2y + 2w + 22 + 2w + T + yow + 2w) — ¢riety?(—2®y w
+ 22yzw? + 2yzw + 22 yw? + 2iyw — 2% 2w + 22%2w? + 2% 2w — 2w + 2y 2w
+ 2xy22w + a:yz2 + :L“yzw2 + ryzw + Yz — 2v22w? + zaw? — y2z2w + yzQw)

— Pricyw(yz +y + 2 + w) — ¢riady? 2w’ — ¢Pricty(2®yw?® — ry’ 2w’

+ ay2w + 2y*z + ryzw® — 2w + 220? + yPow — y2rw® + 2y2tw + yaw — 22w?)

+ q2r2xy(—:v2y2w + :chsz + 23:2yw2 — :r2yw + 2?2w? + a:szw — nyz + xyz
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+ z2w® + T2w?® — z2w + y2iw) + Pra*yPw + rixtyzw(yz + yw + 2w + w)
+ qrzx(xzwa — 22w? + xyzzw — 2xy2w + xyzw?’ + :cyzw2 + TYyzw + a:yw3
+ 2zyw? + 2zzw? — y22% + yPaw? + 202w — Pz + y22w? + 2y2tw + yew? + yzw

— 22w?) + qrow(zy + x + yzw + yz + yw +y + 2w + 2) + rlrw(zw + yz + 2w?)

+ r(zyw + 2zw* + 2w + yz + 2w®) — w}st + ¢°rlx'0yP P {¢*r Py P w (y + w)

+ ¢* 3ty (ayw + 2y + vw? + yzw + 2w) + Ericdy?y(—a?yw? + 2w + 2w
+ a:wa + zyzw + vyz + 2xyw + vy — 22w’ — zw? — yQZw + yzw)

+ @*r* 2y (zyw — 22w + 22w — 12 — TW? + Y2 + Yz — 22w? — 22%w + 2w)

+ @rady?aw — Privdyzw(zyw + ¥z + 2w) — ¢@ricty(—2?yzw? — 2?yw + 2’ 2w?

+ 2%w? + zytw — Yz + ry2iw + ryzw? + Teyzw + zyz + v2tw + vowd

+ zaw? + Y22 + y2rw? + y2tw — y2 + 22wt + 2w) — ¢Praty(vyzw + ryw

+ 2w + 2w + y2w + yz + 2w?) — qriz?z(—zyw? + ryw + zw? + y?z + y*w — y?
+ yzw? + yzw + yw? + 2yw — zw?) — gra(r*yw + ¥w + vyz + ryw? + YW

+ 2z2w? + z2w + yzQw + yz2 +yzw +yz — 2w? — z2w) — qrzw + r2z? zw?

— ro(zw® + 2w + yz + 2w® — 20° — 2w) + 2(w? + w + 1)}5°

+ gyt  — gt riartyP 2w + B3ty + Priat Ytz (ayw + 1 — y + 2w?
+ 52w +w) + @Pra*y’z(zw + 1 + 2w) + ¢*ric’yz(—ryzw + ryw® + 2rYyw + T2W
+ zw + y*2 + y2w® + yz + 2w? + 2w) + ¢roy(—2*yiw + ¥ 2w + 22w + 1y2?

+ 2zyzw + 2zyz + 122 + vow? + vz — y2rw + 22w) — qriv’ytw + grez(—zyw?

— zyw + 2y + zw? +yw +y — 20* — 2w) — qz(zyw + x + 2w) — rezw(w + 1)
+aw — 2w? — 22w — 2}s% — ¢Pri0 2B uwt P riayP 2 (y + w)

+ @Pra*y? (x4 2w + 2) + Pray(—zyz + syw + Ty + 22 + T — Yy2w + 2w)

— grayz(w + 1) — q(zyw + zw + x + yz + 2w) — w}s’

o q16T12x19y15210w5{1 +q2’f’$2y}88,

denominator = (1 — ¢)(1 — zq)(1 — z%¢r)(1 — zyqr)(1 — xyzqr)(1 — z*y*¢°r)
x (1 = x?y%qrs)(1 — 2®yzqrs) (1 — zyzwqrs) (1 — zyzwugrs)

x (1 — 2%y%2¢’rs)(1 — 22y*22¢°rs) (1 — 2*y*2wePrs)

x (1 — 22y%22¢°r%s) (1 — 2*y22wq?r?s) (1 — 222 22w?gPr?s)
x (

1— x4y222w2q37“282).

For example, by using computers, we know that the coefficient of ¢*4r12s102189 2109642 in

this generating function is 45, which coincides with the multiplicity of {22, 18, 14,10, 6, 2}
in {14,12,10}2.
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The above generating function is quite lengthy. But its numerator possesses the fol-
lowing reciprocal property:

1 11 1 1 1 1
h(xa Y,z,w,q,r, S) = _x21y16210w5q187‘1358h <_a Ty Ty T Ty T Ty T _> .

Note that the depth of {ABC}? is at most 6, and the above generating function gives

the full decompositions of {ABC}? for all {ABC} with no redundant terms. Hence, by
putting z =y = 2z = w = u = 1 into the above, we have the following conjecture.

Conjecture 1'. The coefficient of ¢*rBsC in the following formal power series is equal

to the number of irreducible components of the tensor square {ABC}? (A> B > C > 0).

k(q,r,s)
(1—¢)?(1 = qr)*(1 = ¢*r)(1 — grs)*(1 — ¢*rs)3(1 — ¢°r%s)*(1 — ¢*r?s?)

Here k(q,r,s) is a polynomial of q, r and s defined by

k(g,r,s) =
1+ ¢*r + ¢*r(—q¢°r* — 4¢*r* — 2¢%r + 3qr + 4r + 2)s
+ 3% (2¢"? + 2¢*r* — ¢*r® — 2¢°r? + ¢®r — 6¢%r* — 9¢°r + qr® — 6qr — q + 1)s*
+ q57°3(—q4r4 + 4¢3 — ¢Mr? + 8¢ + 7% + ¢?r® + 8¢%r? + 3¢%r — dqr? — bgr
—4r — 2)s* + ¢"r*(=2¢*r* — 4q*r® — 5¢3r® — 4¢°r? + 3¢*r® 4+ 8¢%r? + ¢*r + Tqr?
+8qr — r? +4r — 1)s* + ¢°r®(¢*r® — ¢*r® — 6¢°r* + ¢*r — 9¢*r? — 6¢%r + qr?
—2qr —q + 2r +2)s° + ¢" ¥ (2¢°r% + 4¢3 + 3¢*r — 2qr — 4q — 1)s°
+ g1 + ¢*r)s”.

This polynomial k(g, 7, s) is still quite complicated when compared with the case of { AB}?
stated in Section 2. But it also possesses the following reciprocal property:

1 1 1
k(q,7,s) = ¢*%r'tsk (— — —) )

’ ’
q T S

By using computers, we checked that the above formal power series gives the correct
number of irreducible components of {ABC}? for 20 > A > B > C > 0. For example,
the above generating function is expanded as

1+ 2q + 3¢ + 3qr + 4¢° + 8¢°r + 4qrs + 5¢* + 13¢°r + 6¢°r* + 13¢°rs + 6¢° + 18¢*r
+18¢3r% + 22¢%rs + 18¢%r?s + T¢® + 23¢°r + 32¢*r* + 31q¢*rs + 10¢°r2 + 62¢3r°s
+10¢%r%s* + -+ - - - + 3638855¢%°r 16510 4. ... .

And the numbers of irreducible components of {321}? and {20,16,10}? are actually 62
and 3638855, respectively. Perhaps there also exist similar decomposition formulas of the
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plethysms { ABC}® {2} and {ABC'}®{1%}, whose sum just coincides with the generating
functions in Conjectures 1 and 1'.

As another example of the usefulness of generating functions, we next state a conjecture
on the decomposition of the tensor product {A;, As,- - -, A }H{n}.

Conjecture 2. We put |A| = Aj+---+ A, (A1 >---> A, >0). Then the coefficient

of 1%t - xpFr g At - g Am in the following formal power series is equal to the coefficient

of {|Al+n— (ki +- -+ km), ki, - ,km} in the tensor product {Ay, -, AnH{n}:

Y nsprsespn>0(T1q1)7 (TG )P

(1= @)1 —21q1¢2)(1 = 212201¢2q3) -~ (L = @1+ T @1~ Gm)

In particular, the number of irreducible components of {A1,--- , Am}{n} is equal to the
coefficient of 14" - - - ¢ A™ in the formal power series

Donzpizzpmo B

I-g)1—qg) -1—q- gm)

For small values of |A| we directly checked that this conjecture actually holds.

Ezample. (1) In the case of m =3, n=1,weput ¢ =¢q, @2 =7, ¢3 = S, 1 = x,
29 =y and r3 = z. Then the above generating function is expressed as
1+ zq + xyqr + xyzqrs
(1 —q)(1 — zgr)(1 — zygrs)
=1+(1+z)g+ (1+2)¢*+ (z + 2y)gr + (1 + 2)¢°
+ (z + 2% + 2y)Pr + (xy + zy2)qrs + -+ - - - .

And we have actually the decompositions of { ABC'}{1} as follows:

{1H1} = {2} + {17},

{2H1} = {3} + {21},

{11} = {21} + {1},

{3H1} = {4} + {31},

{201} = {31} + {27} + {217},
{PH1} = {21°} + {1},

(2) Under the same notation as above, we consider the case m = 2, n = 3. In this
case the above generating function is expressed as

1+ zq + zygr + 22¢% + 2%yg®r + 22y%¢*r? + 22¢° + 23ygdr + 2392 r? + 22y3¢%r®

(1—q)(1 — zqr)
=14+ (1 +2)g+ (1 +z+2°)¢+ (z+a2y)gr + (1 + 2 +2* +2°)¢*
+ @+t +oy+2?)r+ Q4+ +22+23)g - .
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And the actual decompositions of {AB}{3} are given by

{13{3} = {4} + {31},

{243} = {5} + {41} + {32},

{17}{3} = {41} + {317},

{313} = {6} + {51} + {42} + {3%},
{21}{3} = {51} + {42} + {417} + {321},
{4{3} = {7} + {61} + {52} + {43},

Among all tensor products {A}{u}, {A41,---, Ap}{n} is the simplest one in carrying out
Littlewood-Richardson rule combinatorially. It seems that there exist a similar decompo-
sition formula of {Ay,---, A, }{p} for the partition {u} with depth> 2.

References

[1] Y. Agaoka, An algorithm to calculate plethysms of Schur functions, Memoirs of the
Faculty of Integrated Arts and Sciences, Hiroshima University, Ser.IV, Science Re-
port 21 (1995), 1-17.

[2] Y. Agaoka, Combinatorial conjectures on the range of Young diagrams appearing
in plethysms, Technical Report No.59, The Division of Mathematical Information
Sciences, Faculty of Integrated Arts and Sciences, Hiroshima University, 1998, pp.1-
184.

[3] Y. Agaoka, Decomposition formulas of the plethysm {m} ® {u} with |pu| = 3, Tech-
nical Report No.91, The Division of Mathematical Information Sciences, Faculty of
Integrated Arts and Sciences, Hiroshima University, 2002, pp.1-12.

(4] L. Carini and J. B. Remmel, Formulas for the expansion of the plethysms s3[s )] and
52[8(nk)]; Discrete Math. 193 (1998), 147-177.

[56] C. Carré and B. Leclerc, Splitting the square of a Schur function into its symmetric
and antisymmetric parts, J. Algebraic Comb. 4 (1995), 201-231.

[6] D. E. Littlewood, Polynomial concomitants and invariant matrices, J. London Math.
Soc. 11 (1936), 49-55.

[7] D. E. Littlewood, Invariant theory, tensors and group characters, Phil. Trans. Royal
Soc. London A 239 (1944), 305-365.

[8] D. E. Littlewood, The Theory of Group Characters and Matriz Representations of
Groups (Second edition), Oxford Univ. Press, Oxford, 1950.



16 Y. Agaoka

[9] D. E. Littlewood and A. R. Richardson, Group characters and algebra, Phil. Trans.
Royal Soc. London A 233 (1934), 99-141.

[10] I. G. Macdonald, Symmetric Functions and Hall polynomials (Second edition), Ox-
ford Univ. Press, Oxford, 1995.

[11] H. Mizukawa and H. Yamada, Rectangular Schur functions and the basic represen-
tation of affine Lie algebras, preprint.

[12] J. B. Remmel and T. Whitehead, On the Kronecker product of Schur functions of
two row shapes, Bull. Belg. Math. Soc. 1 (1994), 649-683.

[13] R. P. Stanley, Enumerative Combinatorics Vol.2, Cambridge Univ. Press, Cambridge,
1999.



