Continuity properties of Riesz potentials for
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Abstract

Our aim in this paper is to deal with 0-H&lder continuity for Riesz po-
tentials of functions belonging to Lebesgue’s LP space of variable exponent,
in the borderline case of Sobolev’s theorem. We are also concerned with
exponential integrability for Riesz potentials.

1 Introduction

Let R" denote the n-dimensional Euclidean space. We consider the Riesz potential
of order « for a locally integrable function f on R", which is defined by

MJ@wa/M—yw”ﬂw@.

Here 0 < a < n. Following Kovacik and Rékosnik [9], we consider a positive
continuous function p(-) : R™ — [1,\), 1 < A < oo, and a measurable function f
satisfying

/wwM@<m

Recently Diening [3] has established embedding results for Riesz potentials of such
functions. For related results, see also Edmunds-Rakosnik [4], Futamura-Mizuta-

Shimomura [6] and Ruzicka [13]. In these discussions, the continuity of Hardy-
Littlewood maximal functions is a crucial tool (see Diening [2]).

In case p(-) is a constant py and py > n/a, well known Sobolev’s theorem
says that U, f is continuous in R™ (see e.g. [1], [10], [12]). Our first aim in this
paper is to discuss the continuity for a-potentials of functions in LP() spaces when
p(z) > n/a for x € R™ and p(-) satisfies a so called 0-Hélder condition, as an
extension of Harjulehto-Hésto [7].
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We also study exponential integrabilities of a-potentials when they are not
continuous, as an extension of Trudinger’s exponential integrability (see Hedberg

[8] and Adams-Hedberg [1]).

2 Continuity of potentials

Throughout this paper, let C' denote various constants independent of the variables
in question.

Let G be a bounded open set in R" and B(xo, ) C G, where B(x, 1) denotes
the open ball centered at z( of radius ry > 0. Consider a positive continuous
function p(-) on G. In this and the next sections let us assume that :

(p1) infe\B(aosr) P(2) > p— = n/a and py = supg p(z) < oo;

alog(log(1/|zo —y|)) a
p2) ply) =2 p- + for y € B(xg, 1) ,
(b2) 2(5) log(1/lo—sl)  log(1/Ja0— o) (70
where @ > 0 and a is a real number. In our discussions we may assume that
alog(log(1/|zo —y|)) ¢
p3 ply) < p-+
(P W) log(L/ro —9))  loa(L/[za — 4]
for y € B(xg,10) -
> ogllog(L/r) |
a’log(log(1/r a
warar (1) = =001 log(1
og(1/r) og(1/r)

and wy v (0) =0. If &’ > 0 or ' =0 and a” > 0, then we can find r* > 0 so small
that w,y o is nondecreasing on the interval [0, 2r*] and

wa’,a”<8 + t) S wa/’a//(s) + walya/l (t) (1)
for 0 < s <t <r*
Let 1/p'(z) =1—1/p(z) and 1/p" =1—1/p_.
We begin with the following result.

LEMMA 2.1. Ifa > (n — a)/a?, then

/ |z — y’p'(y)(a—n)dy < C(log(l/(s))l*‘mz/(n*a)
GNB(x,0)

for all x € G and 6 € (0,271).
Proor. First note that

Y () __ply) —p-
PO = D =D =17 (ol




Since p_ — 1 = (n — a)/«, by conditions on p, we can find C' > 0 so that
P'(y) <l —weollzo—yl)  (d =aa®/(n—a)?) (2)
for all y € B(xg,ro). For simplicity, set

o o = aa’® log(log(1/7)) . ¢
w(?") = a,70< ) (n _ a)2 log(l/r) log(l/r).

Noting that w is nondecreasing and doubling on [0,70] by (1), we have for
0<6<|rg—x|/2 and x € B(xg,70/2)

/ 5= POy < 3 / 2 — P e gy
B(z,0) 5 B(,277%16)\B(2,2795)

< Z(Q—j(g)(a—n)(p’, —w(2’j5))0n(2—j+15)n

IN

J
0 (2 g)(emme )

IN

J
C> (log1/(2775)) -/ n=e)
J

4

< C / (log(1/t)) ="/ (n=e)p=1 gy
0

_ Cv(log(l/(s))lfaozz/(nfoz)7

since a > (n — a)/a?, where o,, denotes the volume of the unit ball. If y €
G\ B(z,|zo — x|/2), then |zo — y| < 3|z — y|, so that

|z — y|p’(y)(a—n)dy < C/ |20 — y|p’(y)(a—n)dy
GﬂB(xo,&S)

< C(log(1/8))' /(=)

/B(xﬁ)\B(x:woxl/?)

when |zg — z|/2 < 6 < 1ry/4. Therefore it follows that
/ |z — y|p’(y)(a*n)dy < C(log(1/§))lfaa2/(nfa)
B(z,d)

for 0 <0 < 1/2 and z € B(xg,r0/2).
Noting from condition (pl) that py = infyca\ Bzg,ro/4) P(Y) > 1/, we see that

/ 2 — P @) gy < o=/ mo-1)
GNB(z,d)

for x € G\ B(xo,79/2) and § > 0.
Now the proof is completed. O



Define the LP*)(G) norm by

p(y)
% dy < 1}

11l = I fllpr.c = inf{A > 0 : /

G

and denote by LPU)(G) the space of all measurable functions f on G with || f||,.) <
0.

THEOREM 2.2. Let f be a nonnegative measurable function on a bounded open
set G with || f|l,) < 1. Ifa > (n — ) /a?, then U, f is continuous in G. Further,

Uaf (2) = Uaf (2)] < Clog(1/|z — 2[))™*
whenever z, z € G and |z — z| < 1/2, where A = (ac®/(n —a) — 1)/p’.

REMARK 2.3. In view of Sobolev’s theorem, we see that U, f is continuous
in G\ {xo}. Harjulehto-Hésté [7] have also discussed the continuity of Sobolev
functions.

Proor or THEOREM 2.2. First note that
/ PPy < 1 (3)
G

since || f|[p) < 1 by the assumption. Then, for 0 < u < 1, we have by Young’s
inequality and Lemma 2.1

J R T N (e R e
GNB(z,0) GNB(z,0)

< nu <M—’Pl_ / |I _ yl(a—n)p'(y)dy + 1)
GNB(z,9)
< p (O (og(1/8)) et e 4 1)

whenever z € G and 0 < 6 < 1/2. Now, considering p such that p?~ =
(log(1/8))-*/(n=2) e find

| el )y < Cllog(1/5) ()
GNB(x.9)
Hence, if z,z € G and |z — z| < 1/4, then we have
/ o — g Sy < Cllog(1/ o — =)
GNB(z,2|x—z|)
On the other hand we find
/ o =gl = |2 =yl )y
G\B(z,2|z—z|)

< Cla—+ / 2 — g () dy.
G\B(z,2|z—z|)

4



This can be estimated along the same lines as above. For simplicity set § =
2|z — z| < 1/2. Then, for p > 1, letting

E={yeG\B(x2lx—z]): |z —y|* "' > pu},

we have by Young’s inequality and (2)

/ & =y () dy
G\{B(z0,0)UB(z,0)}

IN

u/ {(|x —y[ )W) 4 f(y)“’(y)} dy
G\ B(r0.8)UB(x.6)}

Cu (/ (lz = y|*" /)P Wdy + 1)
E\B(z0,9)

Cu ( / (e = gl == dy + 1)
E\B(z0,9)

< Cu (M—p’w(é)/ |z — y|(a—n—1)(pL—w(5))dy + 1)
G\ B(z,0)

C ( PO glamn—1 L —w@)+n | 1)

< Cﬂ <M*pi+w(5)5*p’, (log<1/5))(a7n71)aa2/(n—a)2 + 1) _

IN

VAN

IN

Now, considering z such that g = 6~ (log(1/8)) /- (=)} e find

/ |z — y|* L f(y)dy < C L (log(1/8)) e/ - (nma)},
G\{B(z0,0)UB(z,d)}

Further, we obtain by (4)

2 —y|* " fy)dy < 5‘1/ lzo — y|* " f(y)dy
GNB(z0,5)

< Co '(log(1/8))~.

/GﬂB(xO,J)\B(z,(S)

Therefore it follows that
/ o= ylo — |2 — gl f()dy < Cllog(1/} — 2) 4.
G\B(z,2|z—z])
Now we establish

|Uozf(x> - Uaf(z)l
/ o — " f(y)dy + / =~y () dy
GNB(z,2|x—z|)

GNB(z,2|x—z|)

IN

+f o =yl = |2 =yl )iy
G\B(z,2|z—=z|)

< Clog(1/]z = 2[)™,



as required. O

COROLLARY 2.4. Suppose

alog(e + log(1/|xy|))
log(e/|xn)

for a > (n — a)/a?®. Let f be a nonnegative measurable function on B = B(0, 1)
with || f||p),8 < 1. Then U, f is continuous in B and it satisfies

Uaf(x) = Uaf(2)] < C(log(1/|z — 2[))~*
whenever z,z € B(0,1/2) and |z — z| < 1/2, where A = (aa?/(n —a) —1)/p_.

p(z) = p(x1, ...y xn) > nja+

PROOF. According to the proof of Theorem 2.2, it suffices to show that
/ |ZL’ _ y‘(a_")p,(y)dy < C(log(l/r))l—aa2/(n—a) (5)
B(z,r)

for 0 <r < 1/2 and |z| < 1/2. To show this, we may assume that

Py) <p —w(lyl) foryeB,
where w(r) = (aa?/(n — a)?)log(log(1/r))/log(1/r) — C/log(1/r) for 0 < r < ry

and w(r) = w(rg) for r > rg. Then, by use of Lemma 2.1, we have

/ =y Wy < (2 — g EHO el gy,
B(z,r)

{yn:lzn—yn|<r}
< C(log(1/r))' oo/,
Thus (5) holds, and the proof is completed. O
REMARK 2.5. Let b> (a+1)/n>1,0 <1y < 1/e and

alog(log(1/[yl))
log(1/1yl)

p(y) =n+

for y € B(0,79). Consider the function

Fly) = lyl™ (log(1/]y) ™"
for y € B(0,79) and f =0 on R"\ B(0,7r9). Then we easily see that

/ |z — y|1_”f(y)dy > C’(log(l/|a7|))1_b for z € B(0,rp)
B(0,ro)
and

/B(O )f(y)p(y’dy < / {ly~" (log(1/1y[)~"}" (log(1/|yl))"dy < oo

B(0,r0)



since —bn + a + 1 < 0 by our assumption.
This means that the exponent A in Theorem 2.2 is best possible.

REMARK 2.6. Let a =n — 1 and

(n — 1) log(log(1/]yl))
log(1/]yl)

for y € B(0,79). Then there exists a measurable function f on R™ such that
U1£(0) = oo and |],) < oo.
In fact, for 1/n < b < 1, consider the function

Fy) = Iyl (log(1/[y])~" (log(log(1/|y]))) "
for y € B(0,7) and f =0 on R™\ B(0, 7). Then we have

ply) =

[ sy = .
B(O,’r‘o)
Since bn > 1 by our assumption, we obtain
/ flyPWdy < / {lyl ™" (log(1/[y[)) " (log(log(1/[y[)))~*}" (log(1/]y|))"*dy
B(0,ro0) B(0,r0)
= /B(O )Iyl_"(log(l/lyl))_l(10g(10g(1/|y|)))_b” <00

In this case we can show exponential integrability (see e.g. [1]), as will be
discussed soon.
3 Exponential integrability
This section concerns with p(-) such that

n — alog(log(1/|xo — yl))
o log(1/|zo — yl)

p(y) <p- +

for y € B(xo,70). In this case, since a-potentials of f € LP()(G) may not be contin-
uous, we discuss the exponential integrability of Trudinger type. Our discussions
here can be carried out along the same lines as in Hedberg [8].

Before doing so we prepare the following lemma under conditions (pl) and (p2).

LEMMA 3.1. If0 < b < a < (n — a)/a?, then

/ |.Z' _ y|(o¢—n)Pl(y)dy < C(log<1/5))l—ba2/(n—a)
(



forx € G and 0 < <1/2.

PROOF. For 0 < b < a < (n —a)/a?, set

w(r) = ba?  log(log(1/r))
(n—a)* log(1/r)

As in (2), we can find r; > 0 such that

P(y) <pl —w(lzo —yl)

for all y € B(xg,r1); in this proof we assume that r = 4rq.
If x € B(xo,2r), then we have

o — gy < 3 / =y We=m)g
§ B(x,276)\B(x,27-16)

< Z(2j—15)(a—n)(p’_ —(X0) g (276)"
J
C Z(Qj—l(s)—(a—n)w@j_lcg)

J

C> (log1/(20715)) e/ (n=e)

J

/B(%vao—rﬂ)\B(u’vﬁ)

IA

IN

IN

C / (log(1/t)) ="/ (=) =1y
6
= C(log(1/8))' 7/,

If § > |zg — z|/2 and x € B(xo,2ry), then

/ o — g Weng, < ¢ g — [P @) gy,
B(wo,4r0)\B(w,9) B(x0,470)\ B(,5)

< C(log(1/8))' /e,

Finally, since infe\ pag,ro) P(2) > p— = n/a, we note that
/ |z — y|p’(y)(a*n)dy <(C < oo
G

for x € G\ B(xo, 2r0).
Thus the required conclusion follows from these facts. O

If f is a locally integrable function on G, then we consider Hardy-Littlewood
maximal function defined by

1
M(z) = sup —— / F)ldy.
>0 OnT" JGanB(a,r)

8




We next prove the estimate of Riesz potentials by use of maximal functions, as
in Hedberg [8].

LEMMA 3.2. Let f be a nonnegative measurable function on G with || f||,¢) < 1.
If0<a<(n—a)/a* and A> (1 —aa?/(n—a))/p"_, then

Uaf(z) < Clog(M f(z) +2))".

PROOF. If (1—ac?/(n—a))/p’_ < A, then there exist 0 < b < aand 0 < py < p’_
such that
(1—ba?/(n—a))/po < A.

We can find r; > 0 such that p/(y) > po for y € B(zg,r1) and
/ (|2 = y|*™" /P Wy < O (log(1/))' =0/ =)
B(zo,r1)\B(z,0)

for 4 > 1 and = € G; in this proof, we may assume that r; = 4r,. Since (3) holds
by the assumption || f||,.) < 1, we have for u > 1

/ 12— 91" f(y)dy
B(zo,4r0)\B(z,0)

< ( / (e — gl /) Oy + / f<y>p<y>dy)
B(zo,410)\B(z,9) G\B(z,9)
< (Cu(1og(1/0)) e 1 1)

1—ba?/(n—a)

Now, considering p such that p=70(log(1/4)) = 1, we have

/ o — " f(w)dy < Cllog(1/6))°
B(z0,4r0)\B(z,0)
with 3 = {1 — ba?/(n — a)}/po. Since inf\ p(zg.r) P(x) > p— = n/a, we note that

[le—yr sy < c
e
for € G\ B(xo,2r). Consequently it follows from [1, (3.1.1)] that
Uaf@) = [ fo—yl i@y [ ey )y
B(z,6) G\B(z,6)
< C§*M f(x) + C(log(1/6))°.

Here, as in the proof of Proposition 3.1.2 in [1], let
§ = (Mf(x))~"*(log(M [ (x) +2))*/*

9



when M f(x) is large enough. Then we have
Uaf(z) < C(log(M f(z) +2))” < C(log(M f(x) +2))*,
as required. O

By Lemma 3.2 and the fact that M f € LP-(G), we establish the following
exponential inequality for f € LPO(G) .

THEOREM 3.3. For A > (1—aa®/(n—a))/p_ > 0, there exist positive constants
¢, and ¢y such that

/ exp(cl(Uaf($))1/A)dx <
G

for all nonnegative measurable functions f on G with || f||,.) < 1.

THEOREM 3.4. Let f be a nonnegative measurable function on G with || f||p) <
oo. If A> (1 —aa*/(n—a))/p_ >0, then

/Gexp(c(Uaf(x))l/A)dx < 00 for all ¢ > 0.

REMARK 3.5. When a = 0, Theorems 3.3 and 3.4 hold for A = 1/p/ =
(n—a)/n.

4 Sobolev’s inequality
In this section we are concerned with p(-) satisfying :

(p4) 1 <p_ =infgp(zr) < p(x) < py =supgp(z) =n/a;

a

| <— whenever |z —y| < 1/2,
log(1/]z —yl)

(P5) Ip(z) — p(y)

for some a > 0.

As an example, we may consider the function of the form
B a
- log(1/r)’

for y € B(xo,70) with ¢ chosen sufficiently small; set p(y) = p; — w(rg) outside
B(zg,79). Note here that

py) =po—w(lzo —yl),  w(r)

w(s+1t) <w(s)+w(t)

for0<s<rgand 0 <t <rg.
Let 1/pf(z) = 1/p(x) — a/n.

10



LEMMA 4.1. If p > 1 and 0 < 0 < 1/2, then

i
[ ey <o (e
G\B(z.5) @)
for x € G, where q(x) =n — ap(z) > 0.

PRroor. First find C' > 0 such that

C
/ /
Py) —p ()] < —F—
) oa(1/17 )
whenever |z — y| < 1/2. Then we have for p > 1

/ (o = oI /) Wy
B(a,u/(e=m)\B(x,0)

< opr@ / 2 — | @),
B(a it/ @)\ B(a)

57 (@) a=n/p(x))
—p'(z)(e = n/p(x))’

which yields the required inequality. O

< C’;fp/(z)

LEMMA 4.2. Let f be a nonnegative measurable function on G with || f|,) < 1.
Then

/G 2 =y f(y)dy < Cla) TN f ()OO,
for x € G, where q(x) =n — ap(z) > 0 and §(z) = min{q(z), 1}.
PROOF. First consider the case
Mf(a:)ql/P/(x) ~ 9ata(@)/p(z) (6)

Since || f][p¢) < 1, we have for > 1

[ vy
G\B(z.5)

< u( [ ey oy + [ f(y)p(y)dy)
G\B(z,6) G\B(,6)

s—al@)/(p(a)-1)
< Cu (,u_p @ ¢ 1)
q(z)

because of Lemma 4.1. Now if we set
§5-a(@)/(p(x)-1)

/()
pr -
q(z)

=1,

11



then

5 q
Tfy)dy < C 1
/G\B(w,5)| vl ) G(x)/v'@

It follows from [1, (3.1.1)] that

/ lz —y|* " fly)dy = / |z —y|*7" f(y)dy + / lz —y|* " f(y)dy
G B(z,0) G\ B(z,0)

§—4(@)/p(z)

Lettlng M f(2)G(x)?'(®) = §—a=a@)/p() by (6) as in the proof of Proposition 3.1.2
n [1], we find

aen P(@) /9 (@) L
[l sl sy < Oy

Next consider the case
Mf(x)ql/p/(x) < ga+q(z)/p(z)

Then we have

/G ey f)dy < CMf(x)
- C ( M f(x)gl/p'(x)> G @)
S (Mf( )~1/P ))p(x)/pﬁ(x)q—l/lpl(x)

1
_ x)/p* () -
a CMf( ) q(;p)a(P(x)_l)/”7

as required. O
In view of Lemma 4.2 we see that
(§(a) @@V, (@) < Car (o)

for all nonnegative measurable functions f on G with ||f||,) < 1. Since M is
bounded from LP") to itself according to the result by Diening [2], we have the
following result.

THEOREM 4.3. There exist positive constants ¢; and ¢y such that

(z
/ (1) POV, £ ()" de < oy
G

for all nonnegative measurable functions f on G with || f,.) < 1.

12



When o = 1, we refer the reader to the paper by Edmunds-Rékosnik [4];
compare also with the paper by Diening [3] concerning Sobolev’s embeddings.

REMARK 4.4. For 0 <e <1, set p(r) =n —¢c and 1/¢ = 1/p(x) — 1/n. Then
we see from Lemma 4.2 that

(/)" " UL fllg < Cllf -
(see also [11]). Hence we have the following fact by Fusco-Lions-Sbordone [5]:

If f is a nonnegative measurable function on GG such that

lim 5‘5/ fly)"=dy =0
G

e—0+

for some 0 < 9 < 1, then
/ exp(c(Uy f ()Y dz < oo for all ¢ > 0,
G

where A= (n—146)/n.
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