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Abstract

Our aim in this paper is to deal with 0-Hölder continuity for Riesz po-
tentials of functions belonging to Lebesgue’s Lp space of variable exponent,
in the borderline case of Sobolev’s theorem. We are also concerned with
exponential integrability for Riesz potentials.

1 Introduction

Let Rn denote the n-dimensional Euclidean space. We consider the Riesz potential
of order α for a locally integrable function f on Rn, which is defined by

Uαf(x) =

∫
|x− y|α−nf(y)dy.

Here 0 < α < n. Following Kováčik and Rákosńik [9], we consider a positive
continuous function p(·) : Rn → [1, λ), 1 < λ < ∞, and a measurable function f
satisfying ∫

|f(y)|p(y)dy <∞.

Recently Diening [3] has established embedding results for Riesz potentials of such
functions. For related results, see also Edmunds-Rákosńik [4], Futamura-Mizuta-

Shimomura [6] and R
◦
užička [13]. In these discussions, the continuity of Hardy-

Littlewood maximal functions is a crucial tool (see Diening [2]).
In case p(·) is a constant p0 and p0 > n/α, well known Sobolev’s theorem

says that Uαf is continuous in Rn (see e.g. [1], [10], [12]). Our first aim in this
paper is to discuss the continuity for α-potentials of functions in Lp(·) spaces when
p(x) ≥ n/α for x ∈ Rn and p(·) satisfies a so called 0-Hölder condition, as an
extension of Harjulehto-Hästö [7].
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We also study exponential integrabilities of α-potentials when they are not
continuous, as an extension of Trudinger’s exponential integrability (see Hedberg
[8] and Adams-Hedberg [1]).

2 Continuity of potentials

Throughout this paper, let C denote various constants independent of the variables
in question.

Let G be a bounded open set in Rn and B(x0, r0) ⊂ G, where B(x0, r0) denotes
the open ball centered at x0 of radius r0 > 0. Consider a positive continuous
function p(·) on G. In this and the next sections let us assume that :

(p1) infG\B(x0,r0) p(x) > p− = n/α and p+ = supG p(x) <∞;

(p2) p(y) ≥ p− +
a log(log(1/|x0 − y|))

log(1/|x0 − y|)
+

ã

log(1/|x0 − y|)
for y ∈ B(x0, r0) ,

where a ≥ 0 and ã is a real number. In our discussions we may assume that

(p3) p(y) ≤ p− +
a log(log(1/|x0 − y|))

log(1/|x0 − y|)
+

C

log(1/|x0 − y|)

for y ∈ B(x0, r0) .
Set

ωa′,a′′(r) =
a′ log(log(1/r))

log(1/r)
+

a′′

log(1/r)

and ωa′,a′′(0) = 0. If a′ > 0 or a′ = 0 and a′′ > 0, then we can find r∗ > 0 so small
that ωa′,a′′ is nondecreasing on the interval [0, 2r∗] and

ωa′,a′′(s+ t) ≤ ωa′,a′′(s) + ωa′,a′′(t) (1)

for 0 ≤ s ≤ t ≤ r∗.
Let 1/p′(x) = 1− 1/p(x) and 1/p′− = 1− 1/p−.
We begin with the following result.

Lemma 2.1. If a > (n− α)/α2, then∫
G∩B(x,δ)

|x− y|p′(y)(α−n)dy ≤ C(log(1/δ))1−aα2/(n−α)

for all x ∈ G and δ ∈ (0, 2−1).

Proof. First note that

p′(y)− p′− = − p(y)− p−
(p(y)− 1)(p− − 1)

= −p(y)− p−
(p− − 1)2

+
(p(y)− p−)2

(p(y)− 1)(p− − 1)2
.
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Since p− − 1 = (n− α)/α, by conditions on p, we can find C > 0 so that

p′(y) ≤ p′− − ωa′,−C(|x0 − y|) (a′ = aα2/(n− α)2) (2)

for all y ∈ B(x0, r0). For simplicity, set

ω(r) = ωa′,−C(r) =
aα2

(n− α)2

log(log(1/r))

log(1/r)
− C

log(1/r)
.

Noting that ω is nondecreasing and doubling on [0, r0] by (1), we have for
0 < δ ≤ |x0 − x|/2 and x ∈ B(x0, r0/2)∫

B(x,δ)

|x− y|p′(y)(α−n)dy ≤
∑
j

∫
B(x,2−j+1δ)\B(x,2−jδ)

|x− y|p′(y)(α−n)dy

≤
∑
j

(2−jδ)(α−n)(p′−−ω(2−jδ))σn(2−j+1δ)n

≤ C
∑
j

(2−jδ)−(α−n)ω(2−jδ)

≤ C
∑
j

(log 1/(2−jδ))−aα
2/(n−α)

≤ C

∫ δ

0

(log(1/t))−aα
2/(n−α)t−1dt

= C(log(1/δ))1−aα2/(n−α),

since a > (n − α)/α2, where σn denotes the volume of the unit ball. If y ∈
G \B(x, |x0 − x|/2), then |x0 − y| ≤ 3|x− y|, so that∫

B(x,δ)\B(x,|x0−x|/2)

|x− y|p′(y)(α−n)dy ≤ C

∫
G∩B(x0,3δ)

|x0 − y|p
′(y)(α−n)dy

≤ C(log(1/δ))1−aα2/(n−α)

when |x0 − x|/2 ≤ δ ≤ r0/4. Therefore it follows that∫
B(x,δ)

|x− y|p′(y)(α−n)dy ≤ C(log(1/δ))1−aα2/(n−α)

for 0 < δ < 1/2 and x ∈ B(x0, r0/2).
Noting from condition (p1) that p0 = infy∈G\B(x0,r0/4) p(y) > n/α, we see that∫

G∩B(x,δ)

|x− y|p′(y)(α−n)dy ≤ Cδ(αp0−n)/(p0−1)

for x ∈ G \B(x0, r0/2) and δ > 0.
Now the proof is completed. 2
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Define the Lp(·)(G) norm by

‖f‖p(·) = ‖f‖p(·),G = inf{λ > 0 :

∫
G

∣∣∣∣f(y)

λ

∣∣∣∣p(y)

dy ≤ 1}

and denote by Lp(·)(G) the space of all measurable functions f on G with ‖f‖p(·) <
∞.

Theorem 2.2. Let f be a nonnegative measurable function on a bounded open
set G with ‖f‖p(·) ≤ 1. If a > (n− α)/α2, then Uαf is continuous in G. Further,

|Uαf(x)− Uαf(z)| ≤ C(log(1/|x− z|))−A

whenever x, z ∈ G and |x− z| < 1/2, where A = (aα2/(n− α)− 1)/p′−.

Remark 2.3. In view of Sobolev’s theorem, we see that Uαf is continuous
in G \ {x0}. Harjulehto-Hästö [7] have also discussed the continuity of Sobolev
functions.

Proof of Theorem 2.2. First note that∫
G

f(y)p(y)dy ≤ 1 (3)

since ‖f‖p(·) ≤ 1 by the assumption. Then, for 0 < µ < 1, we have by Young’s
inequality and Lemma 2.1∫

G∩B(x,δ)

|x− y|α−nf(y)dy ≤ µ

∫
G∩B(x,δ)

{
(|x− y|α−n/µ)p

′(y) + f(y)p(y)
}
dy

≤ µ

(
µ−p

′
−

∫
G∩B(x,δ)

|x− y|(α−n)p′(y)dy + 1

)
≤ µ

(
Cµ−p

′
−(log(1/δ))1−aα2/(n−α) + 1

)
whenever x ∈ G and 0 < δ < 1/2. Now, considering µ such that µp

′
− =

(log(1/δ))1−aα2/(n−α), we find∫
G∩B(x,δ)

|x− y|α−nf(y)dy ≤ C(log(1/δ))−A. (4)

Hence, if x, z ∈ G and |x− z| < 1/4, then we have∫
G∩B(x,2|x−z|)

|x− y|α−nf(y)dy ≤ C(log(1/|x− z|))−A.

On the other hand we find∫
G\B(x,2|x−z|)

||x− y|α−n − |z − y|α−n|f(y)dy

≤ C|x− z|
∫
G\B(x,2|x−z|)

|x− y|α−n−1f(y)dy.
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This can be estimated along the same lines as above. For simplicity set δ =
2|x− z| < 1/2. Then, for µ ≥ 1, letting

E = {y ∈ G \B(x, 2|x− z|) : |x− y|α−n−1 ≥ µ},

we have by Young’s inequality and (2)∫
G\{B(x0,δ)∪B(x,δ)}

|x− y|α−n−1f(y)dy

≤ µ

∫
G\{B(x0,δ)∪B(x,δ)}

{
(|x− y|α−n−1/µ)p

′(y) + f(y)p(y)
}
dy

≤ Cµ

(∫
E\B(x0,δ)

(|x− y|α−n−1/µ)p
′(y)dy + 1

)
≤ Cµ

(∫
E\B(x0,δ)

(|x− y|α−n−1/µ)p
′
−−ω(δ)dy + 1

)
≤ Cµ

(
µ−p

′
−+ω(δ)

∫
G\B(x,δ)

|x− y|(α−n−1)(p′−−ω(δ))dy + 1

)
≤ Cµ

(
µ−p

′
−+ω(δ)δ(α−n−1)(p′−−ω(δ))+n + 1

)
≤ Cµ

(
µ−p

′
−+ω(δ)δ−p

′
−(log(1/δ))(α−n−1)aα2/(n−α)2

+ 1
)
.

Now, considering µ such that µ = δ−1(log(1/δ))−aα
2/{p′−(n−α)}, we find∫

G\{B(x0,δ)∪B(x,δ)}
|x− y|α−n−1f(y)dy ≤ Cδ−1(log(1/δ))−aα

2/{p′−(n−α)}.

Further, we obtain by (4)∫
G∩B(x0,δ)\B(x,δ)

|x− y|α−n−1f(y)dy ≤ δ−1

∫
G∩B(x0,δ)

|x0 − y|α−nf(y)dy

≤ Cδ−1(log(1/δ))−A.

Therefore it follows that∫
G\B(x,2|x−z|)

||x− y|α−n − |z − y|α−n|f(y)dy ≤ C(log(1/|x− z|))−A.

Now we establish

|Uαf(x)− Uαf(z)|

≤
∫
G∩B(x,2|x−z|)

|x− y|α−nf(y)dy +

∫
G∩B(x,2|x−z|)

|z − y|α−nf(y)dy

+

∫
G\B(x,2|x−z|)

||x− y|α−n − |z − y|α−n|f(y)dy

≤ C(log(1/|x− z|))−A,
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as required. 2

Corollary 2.4. Suppose

p(x) = p(x1, ..., xn) ≥ n/α+
a log(e+ log(1/|xn|))

log(e/|xn|)

for a > (n − α)/α2. Let f be a nonnegative measurable function on B = B(0, 1)
with ‖f‖p(·),B ≤ 1. Then Uαf is continuous in B and it satisfies

|Uαf(x)− Uαf(z)| ≤ C(log(1/|x− z|))−A

whenever x, z ∈ B(0, 1/2) and |x− z| < 1/2, where A = (aα2/(n− α)− 1)/p′−.

Proof. According to the proof of Theorem 2.2, it suffices to show that∫
B(x,r)

|x− y|(α−n)p′(y)dy ≤ C(log(1/r))1−aα2/(n−α) (5)

for 0 < r < 1/2 and |x| < 1/2. To show this, we may assume that

p′(y) ≤ p′− − ω(|yn|) for y ∈ B,

where ω(r) = (aα2/(n − α)2) log(log(1/r))/ log(1/r) − C/ log(1/r) for 0 < r ≤ r0

and ω(r) = ω(r0) for r > r0. Then, by use of Lemma 2.1, we have∫
B(x,r)

|x− y|(α−n)p′(y)dy ≤ C

∫
{yn:|xn−yn|<r}

|xn − yn|−1+(n−α)ω(|yn|)dyn

≤ C(log(1/r))1−aα2/(n−α).

Thus (5) holds, and the proof is completed. 2

Remark 2.5. Let b > (a+ 1)/n > 1, 0 < r0 < 1/e and

p(y) = n+
a log(log(1/|y|))

log(1/|y|)

for y ∈ B(0, r0). Consider the function

f(y) = |y|−1(log(1/|y|))−b

for y ∈ B(0, r0) and f = 0 on Rn \B(0, r0). Then we easily see that∫
B(0,r0)

|x− y|1−nf(y)dy ≥ C(log(1/|x|))1−b for x ∈ B(0, r0)

and ∫
B(0,r0)

f(y)p(y)dy ≤
∫
B(0,r0)

{|y|−1(log(1/|y|))−b}n(log(1/|y|))ady <∞
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since −bn+ a+ 1 < 0 by our assumption.
This means that the exponent A in Theorem 2.2 is best possible.

Remark 2.6. Let a = n− 1 and

p(y) = n+
(n− 1) log(log(1/|y|))

log(1/|y|)

for y ∈ B(0, r0). Then there exists a measurable function f on Rn such that
U1f(0) =∞ and ‖f‖p(·) <∞.

In fact, for 1/n < b ≤ 1, consider the function

f(y) = |y|−1(log(1/|y|))−1(log(log(1/|y|)))−b

for y ∈ B(0, r0) and f = 0 on Rn \B(0, r0). Then we have∫
B(0,r0)

|y|1−nf(y)dy =∞.

Since bn > 1 by our assumption, we obtain∫
B(0,r0)

f(y)p(y)dy ≤
∫
B(0,r0)

{|y|−1(log(1/|y|))−1(log(log(1/|y|)))−b}n(log(1/|y|))n−1dy

=

∫
B(0,r0)

|y|−n(log(1/|y|))−1(log(log(1/|y|)))−bn <∞

In this case we can show exponential integrability (see e.g. [1]), as will be
discussed soon.

3 Exponential integrability

This section concerns with p(·) such that

p(y) ≤ p− +
n− α
α2

log(log(1/|x0 − y|))
log(1/|x0 − y|)

for y ∈ B(x0, r0). In this case, since α-potentials of f ∈ Lp(·)(G) may not be contin-
uous, we discuss the exponential integrability of Trudinger type. Our discussions
here can be carried out along the same lines as in Hedberg [8].

Before doing so we prepare the following lemma under conditions (p1) and (p2).

Lemma 3.1. If 0 < b < a ≤ (n− α)/α2, then∫
G\B(x,δ)

|x− y|(α−n)p′(y)dy ≤ C(log(1/δ))1−bα2/(n−α)
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for x ∈ G and 0 < δ < 1/2.

Proof. For 0 < b < a ≤ (n− α)/α2, set

ω(r) =
bα2

(n− α)2

log(log(1/r))

log(1/r)
.

As in (2), we can find r1 > 0 such that

p′(y) ≤ p′− − ω(|x0 − y|)

for all y ∈ B(x0, r1); in this proof we assume that r1 = 4r0.
If x ∈ B(x0, 2r0), then we have∫
B(x,|x0−x|/2)\B(x,δ)

|x− y|p′(y)(α−n)dy ≤
∑
j

∫
B(x,2jδ)\B(x,2j−1δ)

|x− y|p′(y)(α−n)dy

≤
∑
j

(2j−1δ)(α−n)(p′−−ω(2j−1δ))σn(2jδ)n

≤ C
∑
j

(2j−1δ)−(α−n)ω(2j−1δ)

≤ C
∑
j

(log 1/(2j−1δ))−bα
2/(n−α)

≤ C

∫ r0

δ

(log(1/t))−bα
2/(n−α)t−1dt

= C(log(1/δ))1−bα2/(n−α).

If δ ≥ |x0 − x|/2 and x ∈ B(x0, 2r0), then∫
B(x0,4r0)\B(x,δ)

|x− y|p′(y)(α−n)dy ≤ C

∫
B(x0,4r0)\B(x,δ)

|x0 − y|p
′(y)(α−n)dy

≤ C(log(1/δ))1−bα2/(n−α).

Finally, since infG\B(x0,r0) p(x) > p− = n/α, we note that∫
G

|x− y|p′(y)(α−n)dy ≤ C <∞

for x ∈ G \B(x0, 2r0).
Thus the required conclusion follows from these facts. 2

If f is a locally integrable function on G, then we consider Hardy-Littlewood
maximal function defined by

Mf(x) = sup
r>0

1

σnrn

∫
G∩B(x,r)

|f(y)|dy.
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We next prove the estimate of Riesz potentials by use of maximal functions, as
in Hedberg [8].

Lemma 3.2. Let f be a nonnegative measurable function on G with ‖f‖p(·) ≤ 1.
If 0 < a ≤ (n− α)/α2 and A > (1− aα2/(n− α))/p′−, then

Uαf(x) ≤ C(log(Mf(x) + 2))A.

Proof. If (1−aα2/(n−α))/p′− < A, then there exist 0 < b < a and 0 < p0 < p′−
such that

(1− bα2/(n− α))/p0 < A.

We can find r1 > 0 such that p′(y) > p0 for y ∈ B(x0, r1) and∫
B(x0,r1)\B(x,δ)

(|x− y|α−n/µ)p
′(y)dy ≤ Cµ−p0(log(1/δ))1−bα2/(n−α)

for µ > 1 and x ∈ G; in this proof, we may assume that r1 = 4r0. Since (3) holds
by the assumption ‖f‖p(·) ≤ 1, we have for µ > 1∫

B(x0,4r0)\B(x,δ)

|x− y|α−nf(y)dy

≤ µ

(∫
B(x0,4r0)\B(x,δ)

(|x− y|α−n/µ)p
′(y)dy +

∫
G\B(x,δ)

f(y)p(y)dy

)
≤ µ

(
Cµ−p0(log(1/δ))1−bα2/(n−α) + 1

)
.

Now, considering µ such that µ−p0(log(1/δ))1−bα2/(n−α) = 1, we have∫
B(x0,4r0)\B(x,δ)

|x− y|α−nf(y)dy ≤ C(log(1/δ))β

with β = {1− bα2/(n− α)}/p0. Since infG\B(x0,r0) p(x) > p− = n/α, we note that∫
G

|x− y|α−nf(y)dy ≤ C

for x ∈ G \B(x0, 2r0). Consequently it follows from [1, (3.1.1)] that

Uαf(x) =

∫
B(x,δ)

|x− y|α−nf(y)dy +

∫
G\B(x,δ)

|x− y|α−nf(y)dy

≤ CδαMf(x) + C(log(1/δ))β.

Here, as in the proof of Proposition 3.1.2 in [1], let

δ = (Mf(x))−1/α(log(Mf(x) + 2))β/α
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when Mf(x) is large enough. Then we have

Uαf(x) ≤ C(log(Mf(x) + 2))β ≤ C(log(Mf(x) + 2))A,

as required. 2

By Lemma 3.2 and the fact that Mf ∈ Lp−(G), we establish the following
exponential inequality for f ∈ Lp(·)(G) .

Theorem 3.3. For A > (1−aα2/(n−α))/p′− ≥ 0, there exist positive constants
c1 and c2 such that ∫

G

exp(c1(Uαf(x))1/A)dx ≤ c2

for all nonnegative measurable functions f on G with ‖f‖p(·) ≤ 1.

Theorem 3.4. Let f be a nonnegative measurable function onG with ‖f‖p(·) <
∞. If A > (1− aα2/(n− α))/p′− ≥ 0, then∫

G

exp(c(Uαf(x))1/A)dx <∞ for all c > 0.

Remark 3.5. When a = 0, Theorems 3.3 and 3.4 hold for A = 1/p′− =
(n− α)/n.

4 Sobolev’s inequality

In this section we are concerned with p(·) satisfying :

(p4) 1 < p− = infG p(x) ≤ p(x) < p+ = supG p(x) = n/α ;

(p5) |p(x)− p(y)| ≤ ã

log(1/|x− y|)
whenever |x− y| < 1/2 ,

for some ã > 0.

As an example, we may consider the function of the form

p(y) = p0 − ω(|x0 − y|), ω(r) =
ã

log(1/r)
,

for y ∈ B(x0, r0) with r0 chosen sufficiently small; set p(y) = p+ − ω(r0) outside
B(x0, r0). Note here that

ω(s+ t) ≤ ω(s) + ω(t)

for 0 < s < r0 and 0 < t < r0 .
Let 1/p](x) = 1/p(x)− α/n.
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Lemma 4.1. If µ > 1 and 0 < δ < 1/2, then∫
G\B(x,δ)

(|x− y|α−n/µ)p
′(y)dy ≤ C

(
µ−p

′(x) δ
−q(x)/(p(x)−1)

q(x)
+ 1

)
for x ∈ G, where q(x) = n− αp(x) > 0.

Proof. First find C > 0 such that

|p′(y)− p′(x)| ≤ C

log(1/|x− y|)

whenever |x− y| < 1/2. Then we have for µ > 1∫
B(x,µ1/(α−n))\B(x,δ)

(|x− y|α−n/µ)p
′(y)dy

≤ Cµ−p
′(x)

∫
B(x,µ1/(α−n))\B(x,δ)

|x− y|(α−n)p′(x)dy

≤ Cµ−p
′(x) δp

′(x)(α−n/p(x))

−p′(x)(α− n/p(x))
,

which yields the required inequality. 2

Lemma 4.2. Let f be a nonnegative measurable function on G with ‖f‖p(·) ≤ 1.
Then ∫

G

|x− y|α−nf(y)dy ≤ Cq̃(x)−α(p(x)−1)/nMf(x)p(x)/p](x).

for x ∈ G, where q(x) = n− αp(x) > 0 and q̃(x) = min{q(x), 1}.

Proof. First consider the case

Mf(x)q̃1/p′(x) > 2α+q(x)/p(x). (6)

Since ‖f‖p(·) ≤ 1, we have for µ > 1∫
G\B(x,δ)

|x− y|α−nf(y)dy

≤ µ

(∫
G\B(x,δ)

(|x− y|α−n/µ)p
′(y)dy +

∫
G\B(x,δ)

f(y)p(y)dy

)
≤ Cµ

(
µ−p

′(x) δ
−q(x)/(p(x)−1)

q(x)
+ 1

)
because of Lemma 4.1. Now if we set

µ−p
′(x) δ

−q(x)/(p(x)−1)

q̃(x)
= 1,
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then ∫
G\B(x,δ)

|x− y|α−nf(y)dy ≤ C
δ−q(x)/p(x)

q̃(x)1/p′(x)
.

It follows from [1, (3.1.1)] that∫
G

|x− y|α−nf(y)dy =

∫
B(x,δ)

|x− y|α−nf(y)dy +

∫
G\B(x,δ)

|x− y|α−nf(y)dy

≤ CδαMf(x) + C
δ−q(x)/p(x)

q̃(x)1/p′(x)
.

Letting Mf(x)q̃(x)1/p′(x) = δ−α−q(x)/p(x) by (6) as in the proof of Proposition 3.1.2
in [1], we find∫

G

|x− y|α−nf(y)dy ≤ CMf(x)p(x)/p](x) 1

q̃(x)α(p(x)−1)/n
.

Next consider the case

Mf(x)q̃1/p′(x) ≤ 2α+q(x)/p(x).

Then we have∫
G

|x− y|α−nf(y)dy ≤ CMf(x)

= C
(
Mf(x)q̃1/p′(x)

)
q̃−1/p′(x)

≤ C
(
Mf(x)q̃1/p′(x)

)p(x)/p](x)

q̃−1/p′(x)

= CMf(x)p(x)/p](x) 1

q̃(x)α(p(x)−1)/n
,

as required. 2

In view of Lemma 4.2 we see that(
q̃(x)α(p(x)−1)/nUαf(x)

)p](x)/p(x) ≤ CMf(x)

for all nonnegative measurable functions f on G with ‖f‖p(·) ≤ 1. Since M is
bounded from Lp(·) to itself according to the result by Diening [2], we have the
following result.

Theorem 4.3. There exist positive constants c1 and c2 such that∫
G

(
c1q̃(x)α(p(x)−1)/nUαf(x)

)p](x)
dx ≤ c2

for all nonnegative measurable functions f on G with ‖f‖p(·) ≤ 1.

12



When α = 1, we refer the reader to the paper by Edmunds-Rákosńik [4];
compare also with the paper by Diening [3] concerning Sobolev’s embeddings.

Remark 4.4. For 0 < ε < 1, set p(x) = n− ε and 1/q = 1/p(x)− 1/n. Then
we see from Lemma 4.2 that

(1/q)n/(n−1) ‖U1f‖q ≤ C‖f‖n−ε

(see also [11]). Hence we have the following fact by Fusco-Lions-Sbordone [5]:

If f is a nonnegative measurable function on G such that

lim
ε→0+

εδ
∫
G

f(y)n−εdy = 0

for some 0 < δ < 1, then∫
G

exp(c(U1f(x))1/A)dx <∞ for all c > 0,

where A = (n− 1 + δ)/n.
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