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Abstract

Our aim in this paper is to deal with Sobolev embeddings for Riesz
potential spaces of variable exponent.

1 Introduction

Let Rn denote the n-dimensional Euclidean space. We consider the Riesz potential
of order α for a locally integrable function f on Rn, which is defined by

Uαf(x) =

∫
|x− y|α−nf(y)dy.

Here 0 < α < n. Following Orlicz [15] and Kováčik and Rákosńik [10], we consider
a positive continuous function p(·) on Rn and a measurable function f satisfying∫

|f(y)|p(y)dy <∞.

In this paper we are concerned with p(·) satisfying the following 0-Hölder condition

|p(x)− p(y)| ≤ a1 log(log(1/|x− y|))
log(1/|x− y|)

+
a2

log(1/|x− y|)

whenever |x − y| < 1/2, where a1 and a2 are nonnegative constants. Recently
Diening [4] has established embedding results for Riesz potentials in the case a1 = 0.

In these discussions, the continuity of Hardy-Littlewood maximal functions is
a crucial tool. Our first task is to establish the continuity in the case a1 ≥ 0,
which is an extension of Diening [3] in the case a1 = 0. As an application of the
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continuity of maximal functions, we give Sobolev’s inequality for Riesz potentials
in the variable exponent case. Finally we discuss the mean continuity for Riesz
potentials as extensions of Meyers [12] and Harjulehto-Hästö [8].

For related results, see Edmunds-Rákosńik [5], Kováčik-Rákosńik [10] and R
◦
užička

[16].

2 Maximal functions

Throughout this paper, let C denote various constants independent of the variables
in question.

Let G be a bounded open set in Rn, and consider a positive continuous function
p(·) on G.

In this paper let us assume that :

(p1) 1 < p−(B) = infB p(x) ≤ supB p(x) = p+(B) <∞ for B ⊂ G;

(p2) |p(x)− p(y)| ≤ a1 log(log(1/|x− y|))
log(1/|x− y|)

+
a2

log(1/|x− y|)
whenever |x− y| < 1/2, x ∈ G and y ∈ G.

Let 1/p′(x) = 1− 1/p(x). Then, noting that

p′(y)− p′(x) =
p(x)− p(y)

(p(x)− 1)(p(y)− 1)
=
p(x)− p(y)

(p(x)− 1)2
+

{p(x)− p(y)}2

(p(x)− 1)2(p(y)− 1)
,

we have the following result.

Lemma 2.1. There exists a positive constant C such that

|p′(x)− p′(y)| ≤ ω(|x− y|) whenever x ∈ G and y ∈ G,

where ω(r) = ω(r;x) =
a1

(p(x)− 1)2

log(log(1/r))

log(1/r)
+

C

log(1/r)
for 0 < r ≤ r0 and

ω(r) = ω(r0) for r ≥ r0.

For a locally integrable function f on G, we consider the maximal function Mf
defined by

Mf(x) = sup
B

1

|B|

∫
G∩B
|f(y)|dy,

where the supremum is taken over all balls B = B(x, r) and |B| denotes the volume
of B.

Define the Lp(·)(G) norm by

‖f‖p(·) = ‖f‖p(·),G = inf{λ > 0 :

∫
G

∣∣∣∣f(y)

λ

∣∣∣∣p(y)

dy ≤ 1}
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and denote by Lp(·)(G) the space of all measurable functions f on G with ‖f‖p(·) <
∞.

Lemma 2.2. Let f be a nonnegative measurable function on G with ‖f‖p(·) ≤ 1.
Then

Mf(x)p(x) ≤ C
{
Mg(x)(log(e+Mg(x)))A1(x)p(x) + 1

}
,

where g(y) = f(y)p(y) and A1(x) = a1n/p(x)2.

Proof. Let f be a nonnegative measurable function on G with ‖f‖p(·) ≤ 1,
and let 0 < r0 < 1 be fixed. First note that∫

G

f(y)p(y)dy ≤ 1. (1)

Then, if r ≥ r0, then

1

|B(x, r)|

∫
B(x,r)

f(y)dy ≤ 1

|B(x, r)|

∫
B(x,r)

{1 + f(y)p(y)}dy ≤ C

by our assumption. For 0 < µ ≤ 1 and r > 0, we have

1

|B(x, r)|

∫
B(x,r)

f(y)dy

≤ µ

(
1

|B(x, r)|

∫
B(x,r)

(1/µ)p
′(y)dy +

1

|B(x, r)|

∫
B(x,r)

f(y)p(y)dy

)
≤ µ

(
(1/µ)p

′(x)+ω(r) + F
)
,

where F = |B(x, r)|−1

∫
B(x,r)

f(y)p(y)dy. Here, considering

µ = F−1/{p′(x)+ω(r)} = F−1/p′(x)+β(x)

with β(x) = ω(r)/{p′(x)(p′(x) + ω(r))} when F ≥ 1, we have

1

|B(x, r)|

∫
B(x,r)

f(y)dy ≤ 2F 1/p(x)F ω(r)/p′(x)2

;

if F < 1, then we can take µ = 1 to obtain

1

|B(x, r)|

∫
B(x,r)

f(y)dy ≤ 2.

Hence it follows that

1

|B(x, r))|

∫
B(x,r)

f(y)dy ≤ C(F 1/p(x)F ω(r)/p′(x)2

+ 1). (2)
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If r ≤ F−1, then we see from (2) that

1

|B(x, r)|

∫
B(x,r)

f(y)dy ≤ C
{
F 1/p(x)(log(e+ F ))A1(x) + 1

}
.

If r0 > r > F−1, then

F 1/p(x)+ω(r)/p′(x)2 ≤ Cr−n/p(x)−nω(r)/p′(x)2

(∫
B(x,r)

f(y)p(y)dy

)1/p(x)+ω(r)/p′(x)2

.

In view of (1), we find

F 1/p(x)+ω(r)/p′(x)2 ≤ Cr−n/p(x)(log(1/r))A1(x)

(∫
B(x,r)

f(y)p(y)dy

)1/p(x)+ω(r)/p′(x)2

≤ Cr−n/p(x)(log(1/r))A1(x)

(∫
B(x,r)

f(y)p(y)dy

)1/p(x)

≤ Cr−n/p(x)(logF )A1(x)

(∫
B(x,r)

f(y)p(y)dy

)1/p(x)

≤ CF 1/p(x)(logF )A1(x).

Now we have established

1

|B(x, r)|

∫
B(x,r)

f(y)dy ≤ C
{
F 1/p(x)(log(e+ F ))A1(x) + 1

}
for all r > 0 and x ∈ G, which completes the proof. 2

Remark 2.3. Let χE denote the characteristic function of E, and let

p(x) = p0 −
a1 log(log(1/|x|))

log(1/|x|)
,

where p0 = p(0) > 1. Consider the function f = χD0 with D0 = 2B0 \ B0, where
B0 = B(0, r0) and 2B0 = B(0, 2r0). Then note :

(i) ‖f‖p(·),D0 ≤ C1r
n/p(0)
0 (log(1/r0))−A1(0) ;

(ii)
1

|B(0, r)|

∫
B(0,r)

(
f(x)

‖f‖p(·),D0

)p(x)

dx ≤ C2r
−n
0 for r0 < r < 2r0;

(iii)

(
1

|2B0|

∫
2B0

f(x)

‖f‖p(·),D0

dx

)p(0)

≥ C3r
−n
0 (log(1/r0))A1(0)p(0) .

This means that the exponent A1(x) in Lemma 2.2 is best possible.
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Let p0(x) = p(x)/p0 for 1 < p0 < p−(G). Then Lemma 2.2 yields

Mf(x)p0(x) ≤ C
{
Mg(x)(log(e+Mg(x)))ã1n/p0(x) + 1

}
for x ∈ G, where g(y) = f(y)p0(y) and ã1 = a1/p0.

Letting a > a1 when a1 > 0 and a = 0 when a1 = 0, we set A(x) = an/p(x)2.
Then we can choose p0 so that a1p0 ≤ a and

Mf(x)p(x) ≤ C
{
Mg(x)(log(e+Mg(x)))A(x)p(x)/p0 + 1

}p0
,

which yields {
Mf(x)(log(e+Mf(x)))−A(x)

}p(x) ≤ C(Mg(x) + 1)p0 .

Hence we have the following result by the continuity of maximal functions in Lp0 .

Theorem 2.4. Let a > a1 when a1 > 0 and a = 0 when a1 = 0. Set
A(x) = an/p(x)2. If ‖f‖p(·) ≤ 1, then∫

G

{
Mf(x)(log(e+Mf(x)))−A(x)

}p(x)
dx ≤ C.

When a1 = 0, Theorem 2.4 was proved by Diening [3]. For the continuity of
maximal functions in general domains, see Cruz-Uribe, Fiorenza and Neugebauer
[2].

Remark 2.5. Let p(·) be a positive continuous function on G such that 1 ≤
p(x) ≤ p+(G) <∞. Then we can prove the following weak type result for maximal
functions:

|Ef (t)| ≤ C

∫
G

∣∣∣∣f(y)

t

∣∣∣∣p(y)

dy

whenever t > 0 and f ∈ Lp(·)(G), where Ef (t) = {x ∈ G : Mf(x) ≥ t}; for this see
also Cruz-Uribe, Fiorenza and Neugebauer [2, Theorem 1.8].

To prove this, we may assume that t = 1. We have for µ > 1

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

≤ µ

(
1

|B(x, r)|

∫
B(x,r)

(1/µ)p
′(y)dy +

1

|B(x, r)|

∫
B(x,r)

|f(y)|p(y)dy

)
≤ µ

(
(1/µ)(p+)′ + F

)
,

where F = |B(x, r)|−1

∫
B(x,r)

|f(y)|p(y)dy. Here, considering µ = F−1/(p+)′ when

F < 1, we find
1 ≤ 2F 1/p+ ,
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so that (
1

2

)p+

≤M(|f |p(·))(x) for x ∈ Ef (1),

which proves the required assertion.

Remark 2.6. For 0 < r < 1/2, let

G = {x = (x1, x2) : 0 < x1 < 1,−1 < x2 < 1}

and
G(r) = {x = (x1, x2) : 0 < x1 < r, r < x2 < 2r}.

For a1 > 0 and p(0) = p0 > 1, define

p(x1, x2) =

{
p0 − a1 log(log(1/x2))/log(1/x2) when 0 < x2 ≤ r0,
p0 when x2 ≤ 0;

set p(x1, x2) = p(x1, r0) when x2 > r0. Here we take r0 > 0 so small that p(x1, r0) >
1. Consider

fr(y) = χG(r)(y)

and set gr = fr/‖fr‖p(·),G. Then we insist for 0 < r < r0 :

(i) ‖fr‖p(·),G ≤ C1r
2/p(0)(log(1/r))−A1(0) ;

(ii) Mgr(x) ≥ C2r
−2/p(x)(log(1/r))A1(x) for 0 < x1 < r and −r < x2 < 0.

By integration of (ii) we see that∫
G

{
Mgr(x)(log(e+Mgr(x))−A1(x)

}p(x)
dx ≥ C3,

which means that Theorem 2.4 does not hold for 0 < a < a1.

3 Riesz potentials

For 0 < α < n, we consider the Riesz potential of f ∈ Lp(·)(G) defined by

Uαf(x) =

∫
G

|x− y|α−nf(y)dy.

In this section, suppose p+(G) < n/α and let

1/p](x) = 1/p(x)− α/n.

Lemma 3.1. Let f be a nonnegative measurable function on G with ‖f‖p(·) ≤ 1.
Then ∫

G\B(x,δ)

|x− y|α−nf(y)dy ≤ Cδ−n/p
](x) log(1/δ)A1(x)
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for x ∈ G and 0 < δ < 1/2, where A1(x) = a1n/p(x)2 as before.

Proof. Let f be a nonnegative measurable function on G with ‖f‖p(·) ≤ 1.
For µ > 1 we have∫
G\B(x,δ)

|x− y|α−nf(y)dy ≤ µ

(∫
G\B(x,δ)

(|x− y|α−n/µ)p
′(y)dy +

∫
G\B(x,δ)

f(y)p(y)dy

)
≤ µ

(∫
G\B(x,δ)

(|x− y|α−n/µ)p
′(y)dy + 1

)
.

Note here that ∫
B(x,µ1/(α−n))\B(x,δ)

(|x− y|α−n/µ)p
′(y)dy

≤
∫
B(x,µ1/(α−n))\B(x,δ)

(|x− y|α−n/µ)p
′(x)+ω(|x−y|)dy

≤ µ−p
′(x)−ω(δ)

∫
G\B(x,δ)

|x− y|(α−n)(p′(x)+ω(|x−y|))dy

≤ Cµ−p
′(x)−ω(δ)δ(α−n)(p′(x)+ω(δ))+n

≤ Cµ−p
′(x)−ω(δ)δp

′(x)(α−n/p(x))(log(1/δ))(n−α)a1/(p(x)−1)2

= Cµ−p
′(x)−ω(δ)δ−p

′(x)n/p](x)(log(1/δ))(n−α)a1/(p(x)−1)2

.

Considering µ = δ−n/p
](x)(log(1/δ))A1(x), we see that∫

B(x,µ1/(α−n))\B(x,δ)

(|x− y|α−n/µ)p
′(y)dy ≤ C,

so that ∫
G\B(x,δ)

|x− y|α−nf(y)dy ≤ Cδ−n/p
](x)(log(1/δ))A1(x),

as required. 2

Lemma 3.2. Let f be a nonnegative measurable function on G with ‖f‖p(·) ≤ 1.
Then

ρ(Uαf(x), A1(x))p
](x) ≤ C

{
ρ(Mf(x), A1(x))p(x) + 1

}
,

where ρ(t, y) = t (log(e+ t))−y.

Proof. For 0 < δ < 1/2 we have by Lemma 3.1

Uαf(x) ≤ CδαMf(x) + Cδ−n/p
](x)(log(1/δ))A1(x).

Considering δ = Mf(x)−p(x)/n(log(e+Mf(x)))a1/p(x) when Mf(x) is large enough,
we see that

Uαf(x) ≤ C
{
Mf(x)p(x)/p](x)(log(e+Mf(x)))a1α/p(x) + 1

}
.
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Hence it follows that

ρ(Uαf(x), A1(x))p
](x) ≤ C

{
ρ(Mf(x), A1(x))p(x) + 1

}
,

as required. 2

Remark 3.3. Let p and f = χD0 be as in Remark 2.3. Set g = f/‖f‖p(·),D0 .
Then note :

(i) Mg(0) ≤ C1r
−n/p(0)
0 (log(1/r0))A1(0);

(ii) Uαg(0) ≥ C2r
−n/p](0)
0 (log(1/r0))A1(0) .

This means that the exponent A1(x) in Lemma 3.2 is best possible.

Let a > a1 > 0 or a = a1 = 0. Set A(x) = an/p(x)2. In view of Theorem 2.4
and Lemma 3.2 with a1 replaced by a, we have the following result, which gives an
extension of Diening [4].

Theorem 3.4. Letting a > a1 when a1 > 0 and a = 0 when a1 = 0, we
set A(x) = an/p(x)2. Suppose p+(G) < n/α. If f is a nonnegative measurable
function on G with ‖f‖p(·) ≤ 1, then∫

G

{
Uαf(x)(log(e+ Uαf(x)))−A(x)

}p](x)
dx ≤ C.

4 Mean continuity

If f ∈ Lp0(G) with p0 > 1, then we know that

lim
r→0+

1

|B(x0, r)|

∫
B(x0,r)

|Uαf(x)− Uαf(x0)|p
]
0 dx = 0

holds for all x0 ∈ G except in a set of capacity zero, where 1/p]0 = 1/p0 − α/n. If
this is true, then x0 is the Lebesgue point of Uαf ; see e.g. [1], [11], [12], [13]. To
extend this well-known fact to the case of variable exponent, we first prepare the
notion of Lp(·)-capacity.

Let G be a bounded open set in Rn as before. For E ⊂ G, we define the relative
(α, p(·))-capacity by

Cα,p(·)(E;G) = inf

∫
G

f(y)p(y)dy,

where the infimum is taken over all nonnegative functions f ∈ Lp(·)(G) such that
Uαf(x) ≥ 1 for every x ∈ E. For another Sobolev capacity, we also refer the reader
to the paper by Harjulehto-Hasto-Koskenoja-Varonen [9].
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From now on we collect fundamental properties for our capacity, following Mey-
ers [11]. Let us begin with the following result, which is proved in a way similar to
the case of constant exponent (see Meyers [11]).

Lemma 4.1. For E ⊂ G, Cα,p(·)(E;G) = 0 if and only if there exists a nonneg-
ative function f ∈ Lp(·)(G) such that Uαf(x) =∞ for every x ∈ E.

For 0 < r ≤ 1/2, set

h(r;x) =


rn−αp(x)(log(1/r))αa1 when p(x) < n/α,

(log(1/r))α(a1−(n−α)/α2) when p(x) = n/α and a1 < (n− α)/α2,
(log(log(1/r)))−a1α when p(x) = n/α and a1 = (n− α)/α2,
1 otherwise;

set for simplicity h(r; x) = h(r0, x) for r > 1/2.

Lemma 4.2. Suppose p(x) ≤ n/α and a1 ≤ (n − α)/α2. If B(x0, r) ⊂ G and
0 < r < 1/2, then

Cα,p(·)(B(x0, r);G) ≤ Ch(r;x0).

Proof. If we consider the potential

u(x) =

∫
G

|x− y|α−ndy,

then we see that Cα,p(·)(G;G) <∞. Hence we have only to treat the case 0 < r <
r0 < 1/2.

First consider the case p(x0) < n/α. Define

u(x) =

∫
B(x0,r)\B(x0,r/2)

|x− y|α−n|x0 − y|−αdy.

Then, since u(x) ≥ C for x ∈ B(x0, r), we have

Cα,p(·)(B(x0, r);G) ≤ C

∫
B(x0,r)\B(x0,r/2)

|x0 − y|−αp(y)dy

≤ C

∫
B(x0,r)\B(x0,r/2)

|x0 − y|−α(p(x0)+ω(|x0−y|))dy

≤ Cr−α(p(x0)+ω(r))+n

≤ Crn−αp(x0)(log(1/r))a1α,

where ω(r) = a1 log(log(1/r))/ log(1/r) + a2/ log(1/r).
Next suppose p(x0) = n/α and a1 < (n− α)/α2. Consider

u(x) =

∫
B(x0,

√
r)\B(x0,r)

|x− y|α−n|x0 − y|−αdy.
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Noting that u(x) ≥ C log(1/r) for x ∈ B(x0, r), we have

Cα,p(·)(B(x0, r);G) ≤
∫
B(x0,

√
r)\B(x0,r)

(|x0 − y|−α/(C log(1/r)))p(y)dy

≤ C(log(1/r))−p(x0)

∫
B(x0,

√
r)\B(x0,r)

|x0 − y|−α(p(x0)+ω(|x0−y|))dy

≤ C(log(1/r))−p(x0)(log(1/r))a1α+1

≤ C(log(1/r))α(a1−(n−α)/α2).

Finally suppose p(x0) = n/α and a1 = (n− α)/α2. Consider

u(x) =

∫
B(x0,2r0)\B(x0,r)

|x− y|α−n|x0 − y|−α(log(1/|x0 − y|))−1dy

when 0 < r < r0. Since u(x) ≥ C log(log(1/r)) for x ∈ B(x0, r), we find

Cα,p(·)(B(x0, r);G)

≤
∫
B(x0,2r0)\B(x0,r)

{|x0 − y|−α(log(1/|x0 − y|))−1/(C log(log(1/r)))}p(y)dy

≤ C(log(log(1/r))−p(x0) log(log(1/r))

= C(log(log(1/r)))−a1α.

Thus the present lemma is proved. 2

Remark 4.3. If p−(G) ≥ n/α and a1 > (n− α)/α2, then Cα,p(·)({x0};G) > 0
for x0 ∈ G. In this case, if f ∈ Lp(·)(G), then Uαf is shown to be continuous in G
(see [7]).

Lemma 4.4. If f is a nonnegative measurable function on G with ‖f‖p(·) <∞,
then

lim
r→0+

h(r;x)−1

∫
B(x,r)

f(y)p(y)dy = 0

holds for all x except in a set E ⊂ G with Cα,p(·)(E;G) = 0.

Proof. For δ > 0, consider the set

Eδ = {x ∈ G : lim sup
r→0+

h(r; x)−1

∫
B(x,r)

f(y)p(y)dy > δ}.

It suffices to show that Cα,p(·)(Eδ;G) = 0 only when limr→0+ h(r; x) = 0 for some
(or all) x.

Let 0 < ε < 1/2. For each x ∈ Eδ, we find 0 < r(x) < ε such that

h(r(x);x)−1

∫
B(x,r(x))

f(y)p(y)dy > δ.
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By a covering lemma, there exists a disjoint family {Bj} such thatBj = B(xj, r(xj))
and

⋃
j B(xj, 5r(xj)) ⊃ Eδ. Then we have

Cα,p(·)(Eδ;G) ≤
∑
j

Cα,p(·)(B(xj, 5r(xj));G)

≤ C
∑
j

h(r(xj);xj)

≤ Cδ−1

∫
∪jBj

f(y)p(y)dy.

Noting that | ∪j Bj| ≤ Cδ−1εαp̃ for 1 < p̃ < p−(G), we see that

Cα,p(·)(Eδ;G) = 0,

as required. 2

Set ϕ(r, y) = r(log(r+ c))−y. Then for each y0 > 0 we can find c > 0 such that

|ϕ(s, y)− ϕ(t, y)| ≤ ϕ(|s− t|, y) (3)

whenever s ≥ 0, t ≥ 0 and 0 ≤ y ≤ y0.
We are now ready to give mean continuity of Riesz potentials, which give an

extension of Meyers [12] and Harjulehto-Hästö [8].

Theorem 4.5. Letting a > a1 when a1 > 0 and a = 0 when a1 = 0, we set
A(x) = an/p(x)2. Suppose p+(G) < n/α. Let f be a nonnegative measurable
function on G with ‖f‖p(·) ≤ 1. Consider the sets

E = {x ∈ G : Uαf(x) =∞}

and

E(a) = {x ∈ G : lim sup
r→0+

k(r;x)−1

∫
B(x,r)

f(y)p(y)dy > 0},

where k(r;x) = rn−αp(x)(log(1/r))−2A(x)p(x). If x0 ∈ G \ (E ∪ E(a)), then

lim
r→0+

1

|B(x0, r)|

∫
B(x0,r)

ϕ(|Uαf(x)− Uαf(x0)|, A(x))p
](x)dx = 0.

Proof. Suppose Uαf(x0) <∞ and

lim
r→0+

k(r;x0)−1

∫
B(x0,r)

f(y)p(y)dy = 0.

Write

Uαf(x) =

∫
B(x0,2|x−x0|)

|x− y|α−nf(y)dy +

∫
G\B(x0,2|x−x0|)

|x− y|α−nf(y)dy

= U1(x) + U2(x).
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By Lebesgue’s dominated convergence theorem, we see that

lim
x→x0

U2(x) = Uαf(x0) <∞.

Hence, in view of (3), we have only to show that

lim
r→0+

1

|B(x0, r)|

∫
B(x0,r)

|ur(x)|p](x)dx = 0,

where ur(x) = Uαfr(x)(log(Uαfr(x) + c))−A(x) with fr = fχB(x0,r).
We apply Theorem 3.4 with f = fr/‖fr‖p(·) to obtain∫

B(x0,r)

{
Uα(fr(x)/‖fr‖p(·))(log(Uα(fr(x)/‖fr‖p(·)) + c)−Ã(x)

}p](x)

dx ≤ C,

where Ã(x) = ãn/p(x)2 for a1 < ã < a when a1 > 0 and Ã(x) = 0 when a1 = 0.
Hence, since p](x) ≥ p]∗ = np∗/(n− αp∗) with p∗ = p−(B(x0, r)), we see that∫

B(x0,r)

{
Uαfr(x)(log(Uαfr(x) + c))−A(x)

}p](x)
dx

≤ C
{
‖fr‖p(·)(log(‖fr‖−1

p(·) + c))A(x0)
}p]∗

.

Further, since ‖fr‖p
∗

p(·) ≤
∫
B(x0,r)

f(y)p(y)dy = F (r), p∗ = p+(B(x0, r)), we find∫
B(x0,r)

ur(x)p
](x)dx ≤ CF (r)p

]
∗/p
∗
(log(F (r)−1/p∗ + c)p

]
∗A(x0).

If we set ε(r) = k(r; x0)−1

∫
B(x0,r)

f(y)p(y)dy, then we establish

1

|B(x0, r)|

∫
B(x0,r)

ur(x)p
](x)dx ≤ Cr−n(k(r;x0)ε(r))p

]
∗/p
∗
(log(k(r;x0)ε(r))−1)p

]
∗A(x0)

≤ Cε(r)p
]
∗/p
∗

log(1/ε(r))p
]
∗A(x0),

because r(n−αp(x0))p]∗/p
∗ ≤ Cr(n−αp(x0))p](x0)/p(x0)(log(1/r))A(x0)p](x0) for small r. This

shows that the left hand side tends to zero as r → 0+, and thus the proof is
completed. 2

The case a1 = 0 is simple and can be stated in the following (see Harjulehto-
Hästö [8]).

Corollary 4.6. Suppose a1 = 0 and p+(G) < n/α. Let f be a nonnegative
measurable function on G with ‖f‖p(·) ≤ 1. Then

lim
r→0+

1

|B(x0, r)|

∫
B(x0,r)

|Uαf(x)− Uαf(x0)|p](x)dx = 0

for all x0 ∈ G except in a set E with Cα,p(·)(E;G) = 0.
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[5] D. E. Edmunds and J. Rákosńik, Sobolev embedding with variable exponent,
II, Math. Nachr. 246-247 (2002), 53–67.

[6] N. Fusco, P. L. Lions and C. Sbordone, Sobolev embedding theorems in bor-
derline cases, Proc. Amer. Math. Soc. 124 (1996), 561–565.

[7] T. Futamura and Y. Mizuta, Continuity properties of Riesz potentials for
functions in Lp(·) of variable exponent, to appear in Math. Inequal. Appl.
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[10] O. Kováčik and J. Rákosńik, On spaces Lp(x) and W k,p(x), Czechoslovak Math.
J. 41 (1991), 592–618.

[11] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math.
Scand. 8 (1970), 255-292.

[12] N. G. Meyers, Taylor expansion of Bessel potentials, Indiana Univ. Math. J.
23 (1973/74), 1043–1049.

[13] Y. Mizuta, Potential theory in Euclidean spaces, Gakkotosho, Tokyo, 1996.

[14] Y. Mizuta and T. Shimomura, Exponential integrability for Riesz potentials
of functions in Orlicz classes, Hiroshima Math. J. 28 (1998), 355–371.
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